Electrochimica Acta, Vol.254, 269-279, 2017
Preparation and electrochemical performances of NiS with PEDOT:PSS chrysanthemum petal like nanostructure for high performance supercapacitors
This paper reports the facile synthesis of a novel architectural of NiS/PEDOT:PSS with DEG, where the complementary features of the three components (well-defined NiS black pepper like nanoparticles on nickel foam, an ultrathin layers of poly (3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), and diethylene glycol (DEG)) are deposited sequentially to a single entity to fabricate a high-performance electrode for supercapacitor applications. Owing to the high electrical conductivity of the well-defined NiS nanoparticles, in which the conductivity, and good chemical and electrochemical stability is enhanced further by the PEDOT: PSS and DEG thin layers, the as-fabricated NiS/PEDOT:PSS with a DEG chrysanthemum petal-like nanostructure exhibits good rate capability, excellent cycling stability, and high specific capacitance. The PEDOT: PSS with DEG offers extra conductive paths for each layer on NiS, yielding a lower internal resistance and charge-transfer resistance than that of the NiS/PEDOT:PSS without DEG. As a result, the NiS/PEDOT:PSS with the DEG electrode shows a tremendous pseudocapacitance of 750.64 Fg(-1) at 1.11 Ag-1, along with a high energy density of 24.52 Wh kg(-1) at a power density of 138.88 W kg(-1) and good cycling stability, suggesting that it is a promising candidate for energy storage. The unique performance of NiS/PEDOT:PSS with a DEG benefits from its unique chrysanthemum petal-like nanostructure, which could offer faster ion and electron transfer ability, greater reaction surface area and good structural stability. (C) 2017 Elsevier Ltd. All rights reserved.