화학공학소재연구정보센터
Electrochimica Acta, Vol.251, 388-395, 2017
Influence of electrochemical cycling on the rheo-impedance of anolytes for Li-based Semi Solid Flow Batteries
The recently launched concept of Semi-Solid Flow Batteries (SSFBs) shows a strong potential for flexible energy storage, but the liquid-dispersed state of the electrode materials introduces several aspects of which a scientific understanding is lacking. We studied the effect of electrochemical cycling on the rheological and electrical properties of a SSFB anolyte containing Li4Ti5O12 (LTO) and Ketjen Black (KB) particles in EC:DMC solvent with 1 M LiPF6, using an adapted rheometer that allows in situ electrochemical cycling and electrical impedance spectroscopy. Charging (lithiation) caused a reduction in the electronic conductivity, yield stress and high shear viscosity of the fluid electrode. For mildly reducing voltages (1.4 V), these changes were partially reversed on discharging. For more reducing voltages these changes were stronger and persistent. The finding of comparable trends for a fluid electrode without the LTO, lends support to a simplistic interpretation, in which all trends are ascribed to the formation of a surface layer around the conductive KB nanoparticles. This Solid Electrolyte Interphase (SEI) insulates particles and reduces the van der Waals attractions between them. SEI layers formed at less reducing voltages, partially dissolve during the subsequent discharge. Those formed at more reducing voltages, are thicker and permanent. As these layers increase the electronic resistance of the fluid electrode by (more than) an order of magnitude, our findings highlight significant challenges due to SEI formation that still need to be overcome to realize SSFBs. (C) 2017 The Authors. Published by Elsevier Ltd.