화학공학소재연구정보센터
Electrophoresis, Vol.38, No.15, 1851-1859, 2017
Separation of enilconazole enantiomers in capillary electrophoresis with cyclodextrin-type chiral selectors and investigation of structure of selector-selectand complexes by using nuclear magnetic resonance spectroscopy
In the present study, the enantiomer migration order (EMO) of enilconazole in the presence of various cyclodextrins (CDs) was investigated by capillary electrophoresis (CE). Opposite EMO of enilconazole were observed when beta-CD or the sulfated heptakis (2-O-methyl-3,6-di-O-sulfo)-beta-CD (HMDS-beta-CD) was used as the chiral selectors. Nuclear magnetic resonance (NMR) spectroscopy was used to study the mechanism of chiral recognition between enilconazole enantiomers and those two cyclodextrins. On the basis of rotating frame nuclear Overhauser (ROESY) experiments, the structure of an inclusion complex between enilconazole and beta-CD was derived, in which (+)-enilconazole seemed to form a tighter complex than the (-)-enantiomer. This correlates well with the migration order of enilconazole enantiomers observed in CE. No evidence of complexation between enilconazole and HMDS-beta-CD could be gathered due to lack of intermolecular nuclear Overhauser effect (NOE). Most likely the interaction between enilconazole and HMDS-beta-CD leads to formation of a shallow external complex that is sufficient for separation of enantiomers in CE but cannot be evidenced based on ROESY experiment. Thus, in this particular case CE documents the presence of intermolecular interactions which are at least very difficult to be evidenced by other instrumental techniques.