화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.18, 11104-11112, 2017
Open-Framework Manganese(II) and Cobalt(II) Borophosphates with Helical Chains: Structures, Magnetic, and Luminescent Properties
Two borophosphates, (NH4)(1-2x)M1+x(H2O)(2)(BP2O8)center dot yH(2)O with M = Mn (I) and Co (II), synthesized hydrothermally crystallize in enantiomorphous space groups P6(5)22 and P6(1)22 with a = 9.6559(3) and 9.501(3) angstrom, c = 15.7939(6) and 15.582(4) angstrom, and V = 1275.3(1) and 1218.2(8) angstrom(3) for I and II, respectively. Both compounds feature helical chains composed of vertex-sharing tetrahedral PO4 and BO4 groups that are connected through O atoms to transition-metal cations, Mn2+ and Co2+, respectively. For the two crystallographically distinct-transition-metal cation sites present in the structure, this results in octahedral coordination with different degrees of distortion from the ideal symmetry. The crystal-field parameters, calculated from the corresponding absorption spectra, indicate that Mn2+ and Co2+ ions are located in a weak octahedral-like crystal field and suggest that the Co-ligand interactions are more covalent than the Mn-ligand ones. Luminescence measurements at room temperature reveal an orange emission that red-shifts upon lowering of the temperature to 77 K for I, while II is not luminescent. The luminescence lifetimes of I are 33.4 mu s at room temperature and 1.87 ms at 77 K. Both compounds are Curie-Weiss paramagnets with negative Weiss constants and effective magnetic moments expected for noninteracting Mn2+ and Co2+ cations but no clear long-range magnetic order above 2 K.