화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.17, 10155-10161, 2017
Di- and Trivalent Metal-Ion Solution Studies with the Phosphinate-Containing Heterocycle DEDA-(PO)
A 7-membered triprotic heterocycle, DEDA-(PO), was synthesized, characterized, and tested for its solution properties with three trivalent lanthanides (La3+, Gd3+, and Lu3+) and three biologically relevant divalent metal ions (Ca2+, Zn2+, and Cu2+). The ligand synthesis has been reported once before; however, the characterization results were previously misinterpreted to correspond to a larger, 14-membered heterocycle, TETA-(PO)(2). This manuscript serves to correct the original paper. Potentiometric titrations were carried out with each of the metal ions, and the thermodynamic stability values in terms of log beta and log K-ML were calculated showing a 1:1 metal-to-ligand ratio preference for the divalent metal ions and a 1:2 ratio for the lanthanides. The stability of the 1:2 complexes decreased across the lanthanide series, presumed to be a steric effect. Further resolution to the potentiometry results was given via pH-dependent NMR spectrometry (with La3+) and pH-dependent UV-vis spectroscopy (with Cu2+), and the pM values were calculated for all metal ions. The solid-state structure of the 1:1 Cu2+-DEDA-(PO) complex was further characterized by X-ray crystallography.