화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.16, 9913-9921, 2017
Quantification of the Partitioning Ratio of Minor Actinide Surrogates between Zirconolite and Glass in Glass-Ceramic for Nuclear Waste Disposal
Zirconolite-based glass-ceramic is considered a promising wasteform for conditioning minor actinide-rich nuclear wastes. Recent studies on this wasteform have sought to enhance the partitioning ratio (PR) of minor actinides in zirconolite crystal. To optimize the PR in the SiO2-Al2O3-CaO-TiO2-ZrO2 system, a novel conceptual approach, which can be derived from the chemical composition and quantity of zirconolite crystal in glass-ceramic, was introduced based on the results of Rietveld quantitative X-ray diffraction analysis and transmission electron microscopy energy dispersive X-ray spectroscopy. To verify this new conceptual approach, the influences of the crystallization temperature, the concentration of additives, and ionic radii on the PR of various surrogates (Ce, Nd, Gd, and Yb) in zirconolite were examined. The results reveal that the PR of Nd3+ in zirconolite can be as high as 41%, but it decreases as the crystallization temperature increases. The quantities of all phases (including crystalline and amorphous) remained nearly constant when increasing the loading of Nd2O3 in glass-ceramic products crystallized at 1050 degrees C for 2 h. Correspondingly, the PR of Nd3+ decreases in a linear fashion with the loading contents of Nd2O3. The radius of ions also has a great influence on the PR, and an increase in the ionic radius leads to a decrease in the PR. This new approach will be an important tool to facilitate the exploration of a glass-ceramic matrix for the disposal of minor actinide-rich nuclear wastes.