Journal of Materials Science, Vol.52, No.23, 13427-13443, 2017
An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium
Polymer (acidic) electrolyte membrane water electrolysis suffers from insufficient catalyst activity, high cost of noble metal, and unsatisfactory durability, due to the sluggish reaction kinetics of oxygen evolution reaction and poor stability of catalysts under harsh operating environments. Aiming to enhance the utilization and durability of noble metals, a mesoporous Sb-doped SnO2 material with high surface area and conductivity was synthesized via soft-template method to support IrO2 catalyst. Physical characterization reveals that the as-prepared composite exhibits a rough morphology with the weak crystallinity IrO2 upper layer covering the rutile SnO2 crystalline phase. Electrochemical test for the IrO2-loading-dependant activity finds that both the area-free activity and mass-specific current on the 31 wt% sample are the optimal, meaning the excellent dispersion effect coming from the mesoporous Sb-SnO2 support and the synergy between the catalytic particles and Sb dopant. In addition, the enhancement in mass transfer efficiency and conductivity coming from the porous, IrO2-covered cross-linked morphology and the support-active component interaction, the supported IrO2 with 50 wt% loading marks the maximum normalized charge (227 C g(-1) IrO2) and the highest apparent current at 1.75 V. What is more, this composite catalyst with the noble metal oxide coating is much more durable during continuous oxygen evolution procedure under a constant potential of 1.6 V because of the anchor effect from the carrier on the catalyst and a protective effect from the noble metal layer on the non-acid-tolerant support.