화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.121, No.37, 8619-8625, 2017
TiO2 Nanoparticle-Induced Oxidation of the Plasma Membrane: Importance of the Protein Corona
Titanium dioxide (TiO2) nanoparticles, used as pigments and photocatalysts, are widely present in modern society. Inhalation or ingestion of these nanoparticles can lead to cellular-level interactions. We examined the very first step in this cellular interaction, the effect of TiO2 nanoparticles on the lipids of the plasma membrane. Within 12 h of TiO2 nanopartide exposure, the lipids of the plasma membrane were oxidized, determined with a malondialdehyde assay. Lipid peroxidation was inhibited by surface passivation of the TiO2 nanoparticles, incubation with an antioxidant (Trolox), and the presence of serum proteins in solution. Subsequent experiments determined that serum proteins adsorbed on the surface of the TiO2 nanoparticles, forming a protein corona, inhibit lipid peroxidation. Super-resolution fluorescence microscopy showed that these serum proteins were dustered on the nanopartide surface. These protein clusters slow lipid peroxidation, but by 24 h, the level of lipid peroxidation is similar, independent of the protein corona or free serum proteins. Additionally, over 24 h, this corona of proteins was displaced from the nanopartide surface by free proteins in solution. Overall, these experiments provide the first mechanistic investigation of plasma membrane oxidation by TiO2 nanopartides, in the absence of UV light and as a function of the protein corona, approximating a physiological environment.