화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.121, No.29, 7086-7094, 2017
Thermophilic Enzyme or Mesophilic Enzyme with Enhanced Thermostability: Can We Draw a Line?
Aminoglycoside nucleotidyltransferase 4' (ANT) is a homodimeric enzyme that modifies the C4'-OH site of aminoglycoside antibiotics by nucleotidylation. A few single- and double-residue mutants of this enzyme (T130K, D80Y, and D80Y/T130K) from Bacillus stearothermophilus show increased thermostability. This article investigates how such residue replacements, which are distant from the active site and monomer monomer interface, result in various changes of the thermostability of the enzyme. In this work, we show that the thermodynamic properties of enzyme ligand complexes and protein dynamics may be indicators of a thermophilic behavior. Our data suggests that one of the single-site mutants of ANT, D80Y, may be a thermophilic protein and the other thermostable mutant, T130K, is actually a more heat-stable variant of the mesophilic wild type (WT) with a higher T-m. Our data also suggest that T130K and D80Y adopt different global dynamics strategies to achieve different levels of thermostability enhancement and that the differences between the properties of the species can be described in terms of global dynamics rather than in terms of specific structural features. Thermophilicity of the D80Y comes at the cost of less favorable thermodynamic parameters for ligand binding relative to WT. On the other hand, the T130K species exhibits the same affinity to ligands and the same thermodynamic parameters of complex formation as the WT enzyme. These observations suggest that a quantitative characterization of ligand binding and protein dynamics can be used to differentiate thermophilic proteins from their simply more heat-stable mesophilic counterparts.