Journal of Physical Chemistry B, Vol.121, No.28, 6792-6798, 2017
Configurational Disorder of Water Hydrogen-Bond Network at the Protein Dynamical Transition
We introduce a novel strategy to quantify the disorder of extended water water hydrogen-bond (HB) networks sampled in particle-based computer simulations. The method relies on the conformational clustering of the HB connectivity states. We successfully applied it to unveil the fine relationship among the protein dynamical transition in hydrated powder, which marks the activation of protein flexibility at T-d approximate to 240 K, and the sudden increase in the configurational disorder of the water HB network enveloping the proteins. Our finding links, in the spirit of the Adam-Gibbs relationship, the diffusivity of protein atoms, as quantified by the hydrogen mean-square displacements, and the thermodynamic solvent configurational entropy.