화학공학소재연구정보센터
Journal of Power Sources, Vol.363, 450-459, 2017
A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes
Rapid gas-evaporation method is proposed and developed, which yields Si nanoparticles (SiNPs) in a few seconds at high yields of 20%-60% from inexpensive and safe bulk Si. Such rapid process is realized by heating the Si source to a temperature >= 2000 degrees C, much higher than the melting point of Si (1414 degrees C). The size of SiNPs is controlled at tens to hundreds nanometers simply by the Ar gas pressure during the evaporation process. Self-supporting films are fabricated simply by co-dispersion and filtration of the SiNPs and carbon nanotubes (CNTs) without using binders nor metal foils. The half-cell tests showed the improved performances of the SiNP-CNT composite films as anode when coated with graphitic carbon layer. Their performances are evaluated with various SiNP sizes and Si/CNT ratios systematically. The SiNP-CNT film with a Si/CNT mass ratio of 4 realizes the balanced film-based capacities of 618 mAh/g(film), 230 mAh/cm(3), and 0.644 mAh/cm(2) with a moderate Si-based performance of 863 mAh/g(Si) at the 100th cycle. (C) 2017 Elsevier B.V. All rights reserved.