화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.100, No.12, 5409-5420, 2017
Atomic layer deposition onto carbon fiber fabrics
Carbon fiber fabrics, consisting of interwoven bundles of 3000 single fibers, were coated with Al2O3 using the atomic layer deposition (ALD) process, exposing the fabrics to alternating pulses of trimethyl aluminium and water vapors. The thickness and uniformity of the coatings were investigated using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The obtained coatings were conformal, 84 ALD cycles gave rise to approximately 20-nm-thick coatings and 168 ALD cycles to approximately 40-nm-thick coatings. It was found, that a uniform coating can be obtained at a purge time of 40 seconds. Reducing purge times below 20 seconds gives rise to increased particle growth and thus the coating becomes inhomogeneous. Initially, the samples that were coated had a size of 2x10 cm (thickness 0.3mm). The size of the fabric was subsequently increased up to 8x20 cm and a uniform coating of the same quality was obtained. By oxidizing the coated fabrics, fabrics composed of interwoven alumina microtubes were obtained. Infiltration of the microtubes with solutions of two distinguishable fluorescent dyes showed that interchange of the dyes between warp and weft microtubes occurs, but is absent at approximately 20% of the crossovers. Taking all our findings into account, we conclude that the majority of the fibers were separated from each other by the coating prior to the oxidation. This work demonstrates that ALD is a suitable method to produce thin, conformal coatings on the surface of carbon fiber fabrics.