Journal of the American Chemical Society, Vol.139, No.33, 11576-11583, 2017
Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers
The prevalence of the condensed phase, interpenetration, and fragility of ruesoporous coordination polymers (meso-PCPs) featuring dense open metal sites (OMSs) place strict limitations en their preparation, as revealed by experimental and `theoretical reticular chemistry investigations. Herein, we propose a rational design of stabilized high-porosity meso-PCPs, employing a 'low-symmetry ligand in combination with the shortest linker, formic acid. The resulting dimeric dusters (PCP-31 and PCP-32) exhibit high surface areas, ultrahigh porosities, and high OMS derisities (3.76 and 3.29 nmol g(-1) respectively), enabling highly selective- and effective separation of C2H2 from C2H2/CO2 mixtures at 298 K, as verified by binding energy (BE) and electrostatic potentials (ESP) calculations.