화학공학소재연구정보센터
Langmuir, Vol.33, No.35, 8766-8773, 2017
Phosphorus Pentachloride Initiated Functionalization of Silicon Nanocrystals
Phosphorus pentachloride (PCl5) has long been used to chlorinate hydrocarbons. It has also been applied in silicon surface chemistry to facilitate alkylation via a two-step halogenation/Grignard route. Here we report a study of the reaction of PCl5 with hydride-terminated silicon nanocrystals (H-SiNCs). An examination of the reaction mechanism has allowed us to establish a functionalization protocol that uses PCl5 as a surface radical initiator to introduce alkyl and alkenyl moieties to the surface of H-SiNCs. The reaction proceeds quickly in a single step, at room temperature and the functionalized silicon nanocrystals retained their morphology and crystallinity. The resulting materials exhibited size-dependent photoluminescence that was approximately 3X as bright as that observed for thermally hydrosilylated SiNCs. Furthermore, the absolute PL quantum yield (AQY) was more than double. The high AQY is expected to enable SiNCs to compete with chalcogenide-based quantum dots in various applications.