화학공학소재연구정보센터
Macromolecules, Vol.50, No.17, 6489-6500, 2017
Well-Defined Biomimicking Brush-Polymer Self-Assemblies Revealing Cholesterol- and Phosphorylcholine-Enriched Surface
We have newly synthesized a series of well-defined brush polyethers bearing cholesterol (Chol) and phosphorylcholine (PC) moieties in various compositions which can mimic cell membrane. They were thermally stable up to at least 230 degrees C and soluble in common solvents, showing good solution processability. Excitingly, they all favorably self assembled, forming multibilayer structures with 2(1) chain conformation; in comparison, the brush polyether bearing only PC-bristles formed orthorhombically packed cylinder (OPC) structure with 12(5) helical chain conformation. Such multibilayer structure formations could be driven by a strong self-assembling ability of the Chol-bristle in extended conformation; the multibilayer structure formation was further promoted by the presence of PC-bristles. The OPC structure formation could be driven by a lateral packing ability of the brush polymer chain in the helical confirmation resulted from the minimization of repulsive interactions in the neighbored zwitterionic PC-bristles. Because of such the self-assembling natures, all brush polymers always revealed Chol- and PC-enriched surface. Overall, all brush polyethers of this study successfully mimicked cell membrane features (Chol- and PC-surface based on self assembling). They are very suitable for uses in the fields required cell membrane surface characteristics.