화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.6, 978-983, November, 2017
전기방사법을 이용한 BaTiO3/폴리이미드 나노섬유 복합체 제조 및 유전 특성평가
Preparation and Characterization of BaTiO3/Polyimide Composite Nanofibers and Nanocomposites via Electrospinning with Enhanced Dielectric Properties
E-mail:,
초록
고유전성 무기필러가 잘 분산된 고분자-무기복합필름을 제조하기 위하여, 전기방사법을 이용하여 고유전성고분자-복합체 나노섬유를 제조하였고, 연속적인 hot-press 공정을 통해 고유전성-무기복합필름을 제조하였다. 고분자 매트릭스로는 폴리이미드를 사용했으며, 고유전성을 발현하기 위하여 BaTiO3를 무기필러로 사용하였다. 폴리이 미드의 전구체인 폴리아믹산 용액에 고유전 나노입자를 분산시켜 전기방사용 용액을 제조하였고, 폴리아믹산 용액의 농도와 BaTiO3 나노입자의 함량이 나노섬유 제조에 미치는 영향을 주사전자현미경을 이용하여 조사하였다. 전기 방사를 통해 나노섬유화함으로써, 매우 높은 분산성을 가지는 고유전 복합필름을 제조할 수 있었다. 그 결과, 높은 유전특성을 유지하면서 현저하게 낮은 유전손실 값을 가지는 복합필름을 제조할 수 있었다. BaTiO3 80 wt%의 복합필름의 유전율과 유전손실은 1 kHz에서 각각 25.01과 0.08 이하로 측정되었다.
In order to produce a polymer-inorganic composite film in which a high-dielectric inorganic filler is well dispersed, a high dielectric polymer-composite nanofiber was prepared by electrospinning, followed by hot-pressing method. Polyimide and BaTiO3 were used as a polymer matrix and an inorganic filler, respectively. The effects of polyamic acid (as a polyimide precursor) solution concentration and the content of dispersed BaTiO3 nanoparticle on the nanofiber production were investigated by scanning electron microscope. By forming nanofibers through electrospinning, dielectric composite films with very high dispersibility could be produced. As a result, it was possible to produce a composite film having a remarkably low dielectric loss value while maintaining a high dielectric property. The dielectric permittivity of the as-fabricated nanocomposites significantly improved with the increase of BaTiO3 fraction. Dielectric constant and dielectric loss of BaTiO3 80 wt% composite film were measured at 1 kHz and below 25.01 and 0.08, respectively.
  1. Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, Zur Loye HC, Materials, 2, 1697 (2009)
  2. Xu W, Ding Y, Jiang S, Ye W, Liao X, Hou H, Polym. Compos., 37, 794 (2016)
  3. Liu J, Tian G, Qi S, Wu Z, Wu D, Mater. Lett., 124, 117 (2014)
  4. Li C, Yu S, Luo S, Yang W, Ge Z, Huang H, Sun R, Wong CP, RSC Adv., 6, 36450 (2016)
  5. Wang J, Qi S, Sun Y, Tian G, Wu D, Func. Mater. Lett., 9, 165000 (2016)
  6. Huang XY, Jiang PK, Adv. Mater., 27(3), 546 (2015)
  7. Lei Q, Dancer CEJ, Grovenor CRM, Grant PS, Compos. Sci. Technol., 129, 198 (2016)
  8. Wu C, Huang X, Wu X, Yu J, Xie L, Jiang P, Compos. Sci. Technol., 72, 521 (2012)
  9. Yang K, Huang X, He J, Jiang P, Adv. Mater. Inter., 2, 150036 (2015)
  10. Yoon HW, Bok C, Park NK, Jung HM, Kim YS, Kim BG, Suh DH, Won JC, Kim YH, Macromol. Res., 25(3), 290 (2017)
  11. da Silva AB, Arjmand M, Sundararaj U, Bretas RES, Polymer, 55(1), 226 (2014)
  12. Deng H, Lin L, Ji M, Zhang S, Yang M, Fu Q, Prog. Polym. Sci, 39, 627 (2014)
  13. Reneker DH, Yarin AL, Polymer, 49(10), 2387 (2008)
  14. Chen DC, Wang R, Tjiu WW, Liu T, Compos. Sci. Technol., 71, 1556 (2011)
  15. Jung YH, Lee JW, Yoo YT, Polym. Korea, 36(4), 434 (2012)
  16. Ding Y, Wu Q, Zhao D, Ye W, Hanif M, Hou H, Eur. Polym. J., 49, 2657 (2013)
  17. Son TW, Lee GM, Lee DW, Lee JH, Lim HS, Polym. Korea, 36(2), 196 (2012)
  18. Kim IK, Yeum JH, Polym. Korea, 35(6), 553 (2011)
  19. Kim BG, Kim YS, Kim YH, Kim H, Hong YJ, Jung HM, Won JC, Compos. Sci. Technol., 129, 153 (2016)