Korean Journal of Chemical Engineering, Vol.34, No.12, 3085-3091, December, 2017
CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases
E-mail:
The effect of alumina crystalline phases on CO and CO2 methanation was investigated using alumina-supported Ni catalysts. Various crystalline phases, such as α-Al2O3, θ-Al2O3, δ-Al2O3, η-Al2O3, γ-Al2O3, and κ-Al2O3, were utilized to prepare alumina-supported Ni catalysts via wet impregnation. N2 physisorption, H2 chemisorption, temperature- programmed reduction with H2, CO2 chemisorption, temperature-programmed desorption of CO2, and X-ray diffraction were employed to characterize the catalysts. The Ni/θ-Al2O3 catalyst showed the highest activity during both CO and CO2 methanation at low temperatures. CO methanation catalytic activity appeared to be related to the number of Ni surface-active sites, as determined by H2-chemisorption. During CO2 methanation, Ni dispersion and the CO2 adsorption site were found to influence catalytic activity. Selective CO methanation in the presence of excess CO2 was performed over Ni/γ-Al2O3 and Ni/δ-Al2O3; these substrates proved more active for CO methanation than for CO2 methanation.
- Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S, Fuel, 166, 276 (2016)
- Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
- Park ED, Lee D, Lee HC, Catal. Today, 139, 280 (2009)
- Sabatier P, Senderens JB, C.R. Acad. Sci. Paris, 134, 514 (1902)
- Mao B, Ma SSK, Wang X, Su H, Chan SH, Catal. Sci. Technol., 6, 4048 (2016)
- Aziz MAA, Jalil AA, Triwahyono S, Ahmad A, Green Chem., 17, 2647 (2015)
- Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F, RSC Adv., 5, 22759 (2015)
- Su X, Xu J, Liang B, Duan H, Hou B, Huang Y, J. Energy Chem., 25, 553 (2016)
- Vannice MA, J. Catal., 37, 449 (1975)
- Le TA, Kim MS, Lee SH, Kim TW, Park ED, Catal. Today, 293-294, 89 (2017)
- Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrog. Energy, 29(10), 1065 (2004)
- Trueba M, Trasatti SP, Eur. J. Inorg. Chem., 17, 3393 (2005)
- Levin I, Brandon D, J. Am. Ceram. Soc., 81, 1995 (1998)
- Kul’ko EV, Ivanova AS, Litvak GS, Kryukova GN, Tsybulya SV, Kinet. Catal., 45, 714 (2004)
- Sato T, Thermochim. Acta, 88, 69 (1985)
- Sung DM, Kim YH, Park ED, Yie JE, Res. Chem. Intermed., 36, 653 (2010)
- Kul’ko EV, Ivanova AS, Budneva AA, Paukshtis EA, Kinet. Catal., 46, 132 (2005)
- Kim YH, Park ED, Appl. Catal. B: Environ., 96(1-2), 41 (2010)
- Park JE, Kim BB, Park ED, Korean J. Chem. Eng., 32(11), 2212 (2015)
- Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811 (2016)
- Patterson A, Phys. Rev., 56, 978 (1939)
- Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR, Appl. Catal. B: Environ., 147, 359 (2014)
- Li CP, Chen YW, Thermochim. Acta, 256(2), 457 (1995)
- Gao J, Jia C, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F, J. Energ. Chem, 22, 919 (2013)
- Bali S, Leisen J, Foo SH, Sievers C, Jones CW, ChemSusChem, 7, 3145 (2014)
- Lavalley JC, Catal. Today, 27(3-4), 377 (1996)
- Pan Q, Peng J, Sun T, Wang S, Wang S, Catal. Commun., 45, 74 (2014)
- Gao J, Jia C, Zhang M, Gu F, Xu G, Su F, Catal. Sci. Technol., 3, 2009 (2013)
- Munnik P, Velthoen MEZ, Jongh PE, Jong KP, Gommes CJ, Angew. Chem.-Int. Edit., 53, 9493 (2014)
- Bhatia S, Bakhshi NN, Mathews JF, Can. J. Chem. Eng., 56, 575 (1978)
- Liu Y, Gao J, Liu Q, Gu F, Lu X, Jia L, Xu G, Zhong Z, Su F, RSC Adv., 5, 7539 (2015)
- Herwijnen TV, Doesburg HV, Jong WAD, J. Catal., 28, 391 (1973)
- Garbarino G, Bellotti D, Riani P, Magistri L, Busca G, Int. J. Hydrog. Energy, 40(30), 9171 (2015)