화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.12, 3085-3091, December, 2017
CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases
E-mail:
The effect of alumina crystalline phases on CO and CO2 methanation was investigated using alumina-supported Ni catalysts. Various crystalline phases, such as α-Al2O3, θ-Al2O3, δ-Al2O3, η-Al2O3, γ-Al2O3, and κ-Al2O3, were utilized to prepare alumina-supported Ni catalysts via wet impregnation. N2 physisorption, H2 chemisorption, temperature- programmed reduction with H2, CO2 chemisorption, temperature-programmed desorption of CO2, and X-ray diffraction were employed to characterize the catalysts. The Ni/θ-Al2O3 catalyst showed the highest activity during both CO and CO2 methanation at low temperatures. CO methanation catalytic activity appeared to be related to the number of Ni surface-active sites, as determined by H2-chemisorption. During CO2 methanation, Ni dispersion and the CO2 adsorption site were found to influence catalytic activity. Selective CO methanation in the presence of excess CO2 was performed over Ni/γ-Al2O3 and Ni/δ-Al2O3; these substrates proved more active for CO methanation than for CO2 methanation.
  1. Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S, Fuel, 166, 276 (2016)
  2. Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371 (2016)
  3. Park ED, Lee D, Lee HC, Catal. Today, 139, 280 (2009)
  4. Sabatier P, Senderens JB, C.R. Acad. Sci. Paris, 134, 514 (1902)
  5. Mao B, Ma SSK, Wang X, Su H, Chan SH, Catal. Sci. Technol., 6, 4048 (2016)
  6. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A, Green Chem., 17, 2647 (2015)
  7. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F, RSC Adv., 5, 22759 (2015)
  8. Su X, Xu J, Liang B, Duan H, Hou B, Huang Y, J. Energy Chem., 25, 553 (2016)
  9. Vannice MA, J. Catal., 37, 449 (1975)
  10. Le TA, Kim MS, Lee SH, Kim TW, Park ED, Catal. Today, 293-294, 89 (2017)
  11. Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrog. Energy, 29(10), 1065 (2004)
  12. Trueba M, Trasatti SP, Eur. J. Inorg. Chem., 17, 3393 (2005)
  13. Levin I, Brandon D, J. Am. Ceram. Soc., 81, 1995 (1998)
  14. Kul’ko EV, Ivanova AS, Litvak GS, Kryukova GN, Tsybulya SV, Kinet. Catal., 45, 714 (2004)
  15. Sato T, Thermochim. Acta, 88, 69 (1985)
  16. Sung DM, Kim YH, Park ED, Yie JE, Res. Chem. Intermed., 36, 653 (2010)
  17. Kul’ko EV, Ivanova AS, Budneva AA, Paukshtis EA, Kinet. Catal., 46, 132 (2005)
  18. Kim YH, Park ED, Appl. Catal. B: Environ., 96(1-2), 41 (2010)
  19. Park JE, Kim BB, Park ED, Korean J. Chem. Eng., 32(11), 2212 (2015)
  20. Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811 (2016)
  21. Patterson A, Phys. Rev., 56, 978 (1939)
  22. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR, Appl. Catal. B: Environ., 147, 359 (2014)
  23. Li CP, Chen YW, Thermochim. Acta, 256(2), 457 (1995)
  24. Gao J, Jia C, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F, J. Energ. Chem, 22, 919 (2013)
  25. Bali S, Leisen J, Foo SH, Sievers C, Jones CW, ChemSusChem, 7, 3145 (2014)
  26. Lavalley JC, Catal. Today, 27(3-4), 377 (1996)
  27. Pan Q, Peng J, Sun T, Wang S, Wang S, Catal. Commun., 45, 74 (2014)
  28. Gao J, Jia C, Zhang M, Gu F, Xu G, Su F, Catal. Sci. Technol., 3, 2009 (2013)
  29. Munnik P, Velthoen MEZ, Jongh PE, Jong KP, Gommes CJ, Angew. Chem.-Int. Edit., 53, 9493 (2014)
  30. Bhatia S, Bakhshi NN, Mathews JF, Can. J. Chem. Eng., 56, 575 (1978)
  31. Liu Y, Gao J, Liu Q, Gu F, Lu X, Jia L, Xu G, Zhong Z, Su F, RSC Adv., 5, 7539 (2015)
  32. Herwijnen TV, Doesburg HV, Jong WAD, J. Catal., 28, 391 (1973)
  33. Garbarino G, Bellotti D, Riani P, Magistri L, Busca G, Int. J. Hydrog. Energy, 40(30), 9171 (2015)