- Previous Article
- Next Article
- Table of Contents
Korean Journal of Chemical Engineering, Vol.34, No.12, 3220-3225, December, 2017
Preparation of WO3, BiVO4 and reduced graphene oxide composite thin films and their photoelectrochemical performance
E-mail:
Various thin films for photoelectrochemical (PEC) water splitting were prepared and their PEC performance was tested. The precursor solutions for WO3 and BiVO4 photocatalysts were synthesized by solution processes, and the graphene oxide (GO) was prepared by Tour’s method and was calcined and converted to reduced graphene oxide (rGO). The composite photocatalyst thin films of WO3, BiVO4, WO3/BiVO4 and WO3/BiVO4-rGO were prepared on fluorine doped tin oxide glass by spin coating and calcination processes and the PEC performances were analyzed for those photocatalyst layers. The controlled WO3/BiVO4 heterojunction layer showed better PEC performance than the WO3 or BiVO4 single layer by the combined effects of photocatalysts. The WO3/BiVO4-rGO film with the optimum concentration of rGO showed a noticeable increase in photocurrent density because of the increased electrical conductivity by rGO and reduced recombination rate in BiVO4 layer.
Keywords:Production of Hydrogen;PEC Water Splitting;Heterojunction Photocatalyst Layers;Reduced Graphene Oxide (rGO);WO3/BiVO4-rGO Thin Film
- Van De Krol R, Liang Y, Schoonman J, J. Mater. Chem., 18, 2311 (2008)
- Liu X, Wang F, Wang Q, Phys. Chem. Chem. Phys., 14, 7894 (2012)
- Bamwenda GR, Arakawa H, Appl. Catal. A: Gen., 210(1-2), 181 (2001)
- Wang F, Di Valentin C, Pacchioni G, J. Phys. Chem., 116, 8901 (2012)
- Hisatomi T, Kubota J, Domen K, Chem. Soc. Rev., 43, 7520 (2014)
- Ng YH, Iwase A, Kudo A, Amal R, J. Phys. Chem. Lett., 1, 2607 (2010)
- Pathak P, Gupta S, Grosulak K, Imahori H, Subramanian V, J. Phys. Chem., 119, 7543 (2015)
- Ding JR, Kim KS, AIChE J., 62(2), 421 (2016)
- Kim JY, Magesh G, Youn DH, Jang JW, Kubota J, Domen K, Lee JS, Sci. Rep., 3, 1 (2013)
- Qin Z, Tian H, Su T, Ji H, Guo Z, RSC Adv., 6, 52665 (2016)
- Su TM, Tian H, Qin ZZ, Ji HB, Appl. Catal. B: Environ., 202, 364 (2017)
- Zaleska A, Recent Patents Eng., 2, 157 (2008)
- Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J, Energy Environ. Sci., 8, 731 (2015)
- Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X, Chem. Soc. Rev., 43, 5234 (2014)
- Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA, Adv. Mater., 29, 1 (2017)
- Chatchai P, Murakami Y, Kishioka SY, Nosaka AY, Nosaka Y, Electrochim. Acta, 54(3), 1147 (2009)
- Chatchai P, Kishioka SY, Murakami Y, Nosaka AY, Nosaka Y, Electrochim. Acta, 55(3), 592 (2010)
- Su J, Guo L, Bao N, Grimes CA, Nano Lett., 11, 1928 (2011)
- Hong SJ, Lee S, Jang JS, Lee JS, Energy Environ. Sci., 4, 1781 (2011)
- Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R, J. Phys. Chem., 115, 6004 (2011)
- Luo QP, Yu XY, Lei BX, Chen HY, Kuang DB, Su CY, J. Phys. Chem., 116, 8111 (2012)
- Guo J, Li Y, Zhu S, Chen Z, Liu Q, Zhang D, Moon WJ, Song DM, RSC Adv., 2, 1356 (2012)
- Meng FK, Li JT, Cushing SK, Bright J, Zhi MJ, Rowley JD, Hong ZL, Manivannan A, Bristow AD, Wu NQ, Acs Catal., 3, 746 (2013)
- Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
- Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano., 4, 4806 (2010)
- Biswas SK, Baeg JO, Moon SJ, Kong K, So WW, J. Nanopart. Res., 14, 667 (2012)
- Zhang HL, Yang JQ, Li D, Guo W, Qin Q, Zhu LJ, Zheng WJ, Appl. Surf. Sci., 305, 274 (2014)
- Kudo A, Omori K, Kato H, J. Am. Chem. Soc., 121(49), 11459 (1999)
- Dong P, Xi X, Zhang X, Hou G, Guan R, Materials, 9 (2016)
- Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR, Int. J. Nanomedicine., 6, 3443 (2011)
- Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H, J. Phys. Chem. B, 11352, 110 (2006)