Journal of Industrial and Engineering Chemistry, Vol.57, 22-27, January, 2018
In2O3 nanocrystal.p conjugated molecule hybrid materials for high-capacity anode in lithium ion battery
E-mail:
Novel approach to fabricate In2O3 nanocrystal (NC)-π conjugated molecule 4,4'-ethyne-1,2-diyldiben- zoic acid (EBA) hybrid materials by ligand exchange process, Sonogashira coupling reaction, and their utility as a lithium ion battery anode material have been developed. Here, discharge capacity of 900 mAh g-1, excellent rate performance under ultrahigh current density of 20 C, and initial Coulombic efficiency of 60% at moderate charging/discharging current density of 5 C after 100 cycles have been demonstrated, which are synergistically capable of overcoming the drawback of previous In2O3 material. The π-π network allows fast electron/Li+ transport and significant decrease in interfacial resistance in charge/discharge state.
- Tarascon JM, Armand M, Nature, 414, 359 (2001)
- Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM, Nat. Mater., 11(1), 19 (2012)
- Armand M, Tarascon JM, Nature, 451, 652 (2008)
- Park CM, Kim JH, Kim H, Sohn HJ, Chem. Soc. Rev., 39, 3115 (2010)
- Thackeray MM, Wolverton C, Isaacs ED, Energy Environ. Sci., 5, 7854 (2012)
- Nitta N, Wu E, Lee JT, Yushin G, Mater. Today, 18, 252 (2015)
- Reddy MV, Rao GVS, Chowdari BVR, Chem. Rev., 113(7), 5364 (2013)
- Li H, Huang XJ, Chen LQ, Solid State Ion., 123(1-4), 189 (1999)
- Liang C, Gao M, Pan H, Liu Y, Yan M, J. Alloy. Compd., 575, 246 (2013)
- Wu HB, Chen JS, Hng HH, Lou XW, Nanoscale, 4, 2526 (2012)
- Ma J, Lian J, Duan X, Liu X, Zheng W, J. Phys. Chem., 114, 10671 (2010)
- Kwak BS, Jo SW, Park KS, Cho TW, Jeon J, Chung KI, Kang M, J. Ind. Eng. Chem., 46, 111 (2017)
- Zhang Q, Uchaker E, Candelaria SL, Cao G, Chem. Soc. Rev., 42, 3127 (2013)
- Yin YX, Xin S, Guo YG, Part. Part. Syst. Charact., 30(9), 737 (2013)
- Oszajca MF, Bodnarchuk MI, Kovalenko MV, Chem. Mater., 26, 5422 (2014)
- Wang HL, Cui LF, Yang YA, Casalongue HS, Robinson JT, Liang YY, Cui Y, Dai HJ, J. Am. Chem. Soc., 132(40), 13978 (2010)
- Bruce PG, Scrosati B, Tarascon JM, Angew. Chem.-Int. Edit., 47, 2930 (2008)
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
- Lou XW, Deng D, Lee JY, Feng J, Archer LA, Adv. Mater., 20(2), 258 (2008)
- Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y, Nat. Nanotechnol., 3(1), 31 (2008)
- Zhou YN, Zhang H, Xue MZ, Wu CL, Wu XJ, Fu ZW, J. Power Sources, 162(2), 1373 (2006)
- Ho WH, Li CF, Liu HC, Yen SK, J. Power Sources, 175(2), 897 (2008)
- Wang B, Luo B, Li X, Zhi L, Mater. Today, 15, 544 (2012)
- Zhang Y, Jiang C, Zhuang S, Lu M, Cai Y, RCS Adv., 6, 49782 (2016)
- Seo SD, Lee GH, Lim AH, Min KM, Kim JC, Shim HW, Park KS, Kim DW, RCS Adv., 2, 3315 (2012)
- Yu Y, Gu L, Wang C, Dhanabalan A, van Aken PA, Joachim M, Angew. Chem.-Int. Edit., 48, 6485 (2009)
- Qin S, Liu D, Lei W, Chen Y, J. Mater. Chem., 3, 18238 (2015)
- Liu D, Lei W, Qui S, Hou L, Liu Z, Cui Q, Chen Y, J. Mater. Chem., 1, 5274 (2013)
- Lee DW, Yoo BR, J. Ind. Eng. Chem., 28, 1 (2016)
- Bae JW, Park JY, Kwon OS, Lee CS, J. Ind. Eng. Chem., 51, 1 (2017)
- Pham HT, Jeong HD, Bull. Korean Chem. Soc., 35, 2505 (2014)
- Pham HT, Jeong HD, ACS Appl. Mater. Interfaces, 7, 11660 (2015)
- Mio MJ, Kopel LC, Braun JB, Gadzkwa TL, Hull KL, Brisbois RG, Markworth CJ, Grieco PA, Org. Lett., 4, 3199 (2002)
- Osiak M, Khunsin W, Armstrong E, Kennedy T, Torres CMS, Ryan KM, O’Dwyer C, ECS Trans., 53, 53 (2013)
- Hu YY, Liu ZG, Nam KW, Borkiewicz OJ, Cheng J, Hua X, Dunstan MT, Yu XQ, Wiaderek KM, Du LS, Chapman KW, Chupas PJ, Yang XQ, Grey CP, Nat. Mater., 12(12), 1130 (2013)