화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 72-76, January, 2018
CO2 fixation stability by Sulfurovum lithotrophicum 42BKTT depending on pH and ionic strength conditions
E-mail:
The dissolution of CO2, a greenhouse gas most responsible for global warming, in seawater lowers its pH and increases its ionic strength. Sulfurovum lithotrophicum 42BKTT, a deep-sea chemolithotrophic bacterium, can fix high concentration CO2. In this study, we investigated the effect of pH and ionic strength variation of seawater on CO2 fixation by this bacterium. For a stable and continuous fixation of high concentration CO2 by S. lithotrophicum 42BKTT, the pH and ionic strength of the seawater-based medium should be 6.1-6.8 and <0.8 M, respectively. The deviation of pH and ionic strength from these ranges was indicated by the appearance of lengthened and fattened cells whose length and diameter increased by 70-90%. These results imply that the harmful effect of dissolved CO2 on marine ecosystem is due to the increase in ionic strength and decrease in pH of seawater.
  1. IPCC, Agenda, 6(07), 333 (2007)
  2. Fung IY, Doney SC, Lindsay K, John J, Proc. Natl. Acad. Sci. U. S. A., 102(32), 11201 (2005)
  3. Khatiwala S, Primeau F, Hall T, Nature, 462(7271), 346 (2009)
  4. Ho SH, Chen CY, Lee DJ, Chang JS, Biotechnol. Adv., 29, 189 (2011)
  5. Folger P, Carbon Capture and Sequestration (CCS), DTIC Document, 2009.
  6. Seckbach J, Gross H, Nathan M, Israel J. Bot., 20, 84 (1971)
  7. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I, Phytochemistry, 31(10), 3345 (1992)
  8. Maeda K, Owada M, Kimura N, Omata K, Karube I, Energy Conv. Manag., 36(6), 717 (1995)
  9. Graham L, Wilcox L, Algae Upper Saddle River, Prentice-Hall, Inc., NJ, 2000.
  10. Yu KMK, Curcic I, Gabriel J, Tsang SCE, ChemSusChem, 1(11), 893 (2008)
  11. Kwon HS, Lee JH, Kim T, Kim JJ, Jeon P, Lee CH, Ahn IS, RSC Adv., 5(10), 7151 (2015)
  12. Inagaki F, Takai K, Nealson KH, Horikoshi K, Int. J. Syst. Evol. Microbiol., 54(5), 1477 (2004)
  13. Buchanan BB, Arnon DI, Photosynth. Res., 24(1), 47 (1990)
  14. Evans M, Buchanan BB, Arnon DI, Proc. Natl. Acad. Sci., 55(4), 928 (1966)
  15. Houghton R, Annu. Rev. Earth Planet. Sci., 35, 313 (2007)
  16. Millero FJ, Pierrot D, Lee K, Wanninkhof R, Feely R, Sabine CL, Key RM, Takahashi T, Deep Sea Res. Part I, 49(10), 1705 (2002)
  17. Hobbie JE, Daley RJ, Jasper S, Appl. Environ. Microbiol., 33(5), 1225 (1977)
  18. Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R, J. Microbiol. Methods, 37(1), 77 (1999)
  19. Lee S, Hwang S, Lee K, Ahn IS, Colloids Surf. B: Biointerfaces, 47(1), 78 (2006)
  20. Poolman B, Glaasker E, Mol. Microbiol., 29(2), 397 (1998)
  21. Seibel BA, Walsh PJ, Science, 294(5541), 319 (2001)
  22. Portner H, Langenbuch M, Reipschlager A, J Oceanogr, 60(4), 705 (2004)
  23. Portner HO, Langenbuch M, Michaelidis B, J Geophys Res: Oceans, 110(C9), C09S10 (2005)
  24. Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J, J Oceanogr, 60(4), 731 (2004)
  25. Metz B, Davidson O, De Coninck H, Loos M, Meyer L, Carbon Dioxide Capture and Storage, IPCC, Geneva, Switzerland, 2005.
  26. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ, Science, 305(5682), 362 (2004)
  27. Millero FJ, Oceanography, 22(4), 72 (2009)
  28. Singleton F, Attwell R, Jangi M, Colwell R, Appl. Environ. Microbiol., 43(5), 1080 (1982)
  29. Stanley SO, Morita RY, J. Bacteriol., 95(1), 169 (1968)
  30. Kelly MT, Appl. Environ. Microbiol., 44(4), 820 (1982)
  31. Blight K, Ralph D, Hydrometallurgy, 73(3), 325 (2004)
  32. Nichols DS, Olley J, Garda H, Brenner RR, McMeekin TA, Appl. Environ. Microbiol., 66(6), 2422 (2000)