Journal of Industrial and Engineering Chemistry, Vol.57, 72-76, January, 2018
CO2 fixation stability by Sulfurovum lithotrophicum 42BKTT depending on pH and ionic strength conditions
E-mail:
The dissolution of CO2, a greenhouse gas most responsible for global warming, in seawater lowers its pH and increases its ionic strength. Sulfurovum lithotrophicum 42BKTT, a deep-sea chemolithotrophic bacterium, can fix high concentration CO2. In this study, we investigated the effect of pH and ionic strength variation of seawater on CO2 fixation by this bacterium. For a stable and continuous fixation of high concentration CO2 by S. lithotrophicum 42BKTT, the pH and ionic strength of the seawater-based medium should be 6.1-6.8 and <0.8 M, respectively. The deviation of pH and ionic strength from these ranges was indicated by the appearance of lengthened and fattened cells whose length and diameter increased by 70-90%. These results imply that the harmful effect of dissolved CO2 on marine ecosystem is due to the increase in ionic strength and decrease in pH of seawater.
- IPCC, Agenda, 6(07), 333 (2007)
- Fung IY, Doney SC, Lindsay K, John J, Proc. Natl. Acad. Sci. U. S. A., 102(32), 11201 (2005)
- Khatiwala S, Primeau F, Hall T, Nature, 462(7271), 346 (2009)
- Ho SH, Chen CY, Lee DJ, Chang JS, Biotechnol. Adv., 29, 189 (2011)
- Folger P, Carbon Capture and Sequestration (CCS), DTIC Document, 2009.
- Seckbach J, Gross H, Nathan M, Israel J. Bot., 20, 84 (1971)
- Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I, Phytochemistry, 31(10), 3345 (1992)
- Maeda K, Owada M, Kimura N, Omata K, Karube I, Energy Conv. Manag., 36(6), 717 (1995)
- Graham L, Wilcox L, Algae Upper Saddle River, Prentice-Hall, Inc., NJ, 2000.
- Yu KMK, Curcic I, Gabriel J, Tsang SCE, ChemSusChem, 1(11), 893 (2008)
- Kwon HS, Lee JH, Kim T, Kim JJ, Jeon P, Lee CH, Ahn IS, RSC Adv., 5(10), 7151 (2015)
- Inagaki F, Takai K, Nealson KH, Horikoshi K, Int. J. Syst. Evol. Microbiol., 54(5), 1477 (2004)
- Buchanan BB, Arnon DI, Photosynth. Res., 24(1), 47 (1990)
- Evans M, Buchanan BB, Arnon DI, Proc. Natl. Acad. Sci., 55(4), 928 (1966)
- Houghton R, Annu. Rev. Earth Planet. Sci., 35, 313 (2007)
- Millero FJ, Pierrot D, Lee K, Wanninkhof R, Feely R, Sabine CL, Key RM, Takahashi T, Deep Sea Res. Part I, 49(10), 1705 (2002)
- Hobbie JE, Daley RJ, Jasper S, Appl. Environ. Microbiol., 33(5), 1225 (1977)
- Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R, J. Microbiol. Methods, 37(1), 77 (1999)
- Lee S, Hwang S, Lee K, Ahn IS, Colloids Surf. B: Biointerfaces, 47(1), 78 (2006)
- Poolman B, Glaasker E, Mol. Microbiol., 29(2), 397 (1998)
- Seibel BA, Walsh PJ, Science, 294(5541), 319 (2001)
- Portner H, Langenbuch M, Reipschlager A, J Oceanogr, 60(4), 705 (2004)
- Portner HO, Langenbuch M, Michaelidis B, J Geophys Res: Oceans, 110(C9), C09S10 (2005)
- Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J, J Oceanogr, 60(4), 731 (2004)
- Metz B, Davidson O, De Coninck H, Loos M, Meyer L, Carbon Dioxide Capture and Storage, IPCC, Geneva, Switzerland, 2005.
- Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ, Science, 305(5682), 362 (2004)
- Millero FJ, Oceanography, 22(4), 72 (2009)
- Singleton F, Attwell R, Jangi M, Colwell R, Appl. Environ. Microbiol., 43(5), 1080 (1982)
- Stanley SO, Morita RY, J. Bacteriol., 95(1), 169 (1968)
- Kelly MT, Appl. Environ. Microbiol., 44(4), 820 (1982)
- Blight K, Ralph D, Hydrometallurgy, 73(3), 325 (2004)
- Nichols DS, Olley J, Garda H, Brenner RR, McMeekin TA, Appl. Environ. Microbiol., 66(6), 2422 (2000)