화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 89-96, January, 2018
Removal of Chalk River unidentified deposit (CRUD) radioactive waste by enhanced electrokinetic process
E-mail:
Decontamination techniques proposed and used to remove Chalk River unidentified deposit (CRUD) in radioactive waste management. In cases of huge volumes of metal or radionuclides contaminated by CRUD, removal of CRUD by mechanical or chemical decontamination is difficult. An advanced electrokinetic process combined with chemical decontamination was applied to remove CRUD and experimentally evaluated. Oxalic acid was used for CRUD removal, and cobalt (Co) released from the CRUD was transferred to the cathode in an electrokinetic reactor. Results indicate that the combined system is efficient for CRUD removal with enhanced, efficiency by use of the cation exchange membrane and zeolite.
  1. Kinnunen P, Decontamination techniques for activity removal in nuclear environments, FP 6-036367 ANTIOXI research report, March 2008.
  2. Tsai TL, Lin TY, Su TY, Wen TJ, Men LC, Lin CC, J. Radioanal. Nucl. Chem., 295, 289 (2013)
  3. Kim K, Lee HJ, Kang DW, Inoue S, Nucl. Eng. Des., 223, 329 (2003)
  4. Chen J, On the interaction between fuel CRUD and water chemistry in nuclear power plants, SKI Report 00:5, January 2000.
  5. Yeon JW, Choi IK, Park KK, Kwon HM, Song K, J. Nucl. Mater., 404, 160 (2010)
  6. Ishigure K, Boshoku Gijutsu, 5, 276 (1983)
  7. Osterhout MM, Decontamination and Decommissioning of Nuclear Facilities, Plenum Press, New York, 1980, pp. 293.
  8. Lin CC, Prog. Nucl. Energy, 51, 207 (2009)
  9. Co-operative Programme for Exchange of Scientific and Technical Information Concerning Nuclear Installations Decommissioning Projects, A Report by the NEA Task roup on Decontamination, 1999.
  10. Lageman R, Environ. Sci. Technol., 27, 2648 (1993)
  11. Acar BY, Gale RJ, Alshawavkeh AN, J. Hazard. Mater., 40, 117 (1995)
  12. Kim WS, Kim SO, Kim KW, J. Hazard. Mater., 18, 93 (2005)
  13. Jung HB, Yang JS, Um W, J. Radioanal. Nucl. Chem., 304, 615 (2015)
  14. Acar YB, Alshawabkeh AN, Environ. Sci. Technol., 27, 2638 (1993)
  15. Rogers H, Bowers J, Gates-Anderson D, J. Hazard. Mater., 243, 124 (2012)
  16. Chen RZ, Tanaka H, Kawamoto T, Asai M, Fukushima C, Na HT, Kurihara M, Watanabe M, Arisaka M, Nankawa T, Electrochim. Acta, 87, 119 (2013)
  17. Liu HY, Wang JL, J. Hazard. Mater., 261, 307 (2013)
  18. Zhang HX, Zhao X, Wei JY, Li FZ, Chem. Eng. J., 275, 262 (2015)
  19. Esalah OJ, Weber ME, Vera JH, Can. J. Chem. Eng., 78, 94 (2000)
  20. Gupta KV, Gupta M, Sharma S, Water Res., 35, 112 (2001)
  21. Kang KC, Kim SS, Choi JW, Kwon SH, J. Ind. Eng. Chem., 14(1), 131 (2008)
  22. Maaz K, Arif M, Hasanain SK, Abdullah C, J. Magn. Magn. Mater., 308, 289 (2007)
  23. Westinghouse Idaho Nuclear Company, WINCO-1188, Development of Simulated Contamination (SIMCON) and Miscellaneous Decontamination Scoping Test, 1994.
  24. Nam S, Study of Chemical Decontamination Process For CRUD Removal [M.S. Thesis], Pohang University of Science and Technology, South Korea, 2014.
  25. Gupta N, Kushwaha AK, Chattopadhyaya MC, Adv. Mater. Lett., 2(4), 309 (2001)
  26. Mehdizadeh S, Sadjadi S, Ahmadi SJ, Outokesh M, J. Environ. Health Sci. Eng., 12, 1 (2014)
  27. Thomas R, Characterization of PWR steam generator deposits, EPRI, TR- 106048, 1996.
  28. Frattini PL, PWR Shutdown chemistry Practice, EPRI, TR-109569, 1998.
  29. Severa J, Bar J, Handbook of Radioactive Contamination and Decontamination, Elsevier, Amsterdam, 1991.
  30. Coyle CP, Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2016.
  31. Sung KW, Korea Electric Power Research Institute (KEPRI) Report, TR.95ZJ17.97.81 (in Korean), 1997.
  32. Thomas R, Characterization of PWR steam generator deposits, EPRI, TR-106048, 1996.
  33. Pilo F, Fontani E, Aquaro D, Nucl. Eng. Des., 269, 317 (2014)
  34. Probstein RF, Hicks RE, Science, 260, 498 (1993)
  35. Huang JH, Kargl-Shimard C, Oliazadeh M, Alfantazi AM, Hydrometallurgy, 75, 77 (2004)