화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 290-296, January, 2018
Reaction characteristics of Ni-Al nanolayers by molecular dynamics simulation
E-mail:
We have performed molecular dynamics simulations to investigate the reaction characteristics of Ni-Al nanolayers by varying ignition temperature and bilayer thickness with three different compositions (1:1, 3:1, and 1:3) of Ni to Al. The overall sequence of reaction pathway was found to be unchanged by stoichiometry, but the reaction rate and the extents of intermixing varied by case. Also, the reaction kinetics and thermodynamics were quantitatively investigated by various structural and reaction conditions. Through this systematic study, the reaction characteristics of Ni-Al nanolayers were theoretically quantified, which can provide an insight into the fabrication of advanced Ni-Al nanolayer systems.
  1. Merzhanov AG, J. Mater. Chem., 14, 1779 (2004)
  2. Trenkle JC, Wang J, Weihs TP, Hufnagel TC, Appl. Phys. Lett., 87 (2005)
  3. Rogachev AS, Vadchenko SG, Mukasyan AS, Appl. Phys. Lett., 101 (2012)
  4. Varma A, Mukasyan AS, Korean J. Chem. Eng., 21(2), 527 (2004)
  5. Gavens AJ, Van Heerden D, Mann AB, Reiss ME, Weihs TP, J. Appl. Phys., 87, 1255 (2000)
  6. Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Weihs TP, J. Appl. Phys., 95, 248 (2004)
  7. Hong J, Kang SW, J. Ind. Eng. Chem., 18(4), 1496 (2012)
  8. Battezzati L, Pappalepore P, Durbiano F, Gallino I, Acta Mater., 47, 1901 (1999)
  9. Sieber H, Park JS, Weissmuller J, Perepezko JH, Acta Mater., 49, 1139 (2001)
  10. Qiu X, Graeter J, Kecskes L, Wang J, J. Mater. Res., 23, 367 (2008)
  11. Makino A, Prog. Energy Combust. Sci., 27(1), 1 (2001)
  12. Zhu P, Shen RQ, Ye YH, Zhou X, Hu Y, J. Appl. Phys., 110 (2011)
  13. Giles J, Nature, 427, 580 (2004)
  14. Higa KT, J. Propul. Power, 23, 722 (2007)
  15. Duckham A, Spey SJ, Wang J, Reiss ME, Weihs TP, Besnoin E, Knio OM, J. Appl. Phys., 96, 2336 (2004)
  16. Swiston AJ, Besnoin E, Duckham A, Knio OM, Weihs TP, Hufnagel TC, Acta Mater., 53, 3713 (2005)
  17. Wang J, Besnoin E, Duckham A, Spey SJ, Reiss ME, Knio OM, Powers M, Whitener M, Weihs TP, Appl. Phys. Lett., 83, 3987 (2003)
  18. Zhao S, Germann TC, Strachan A, J. Chem. Phys., 125 (2006)
  19. Kim JS, LaGrange T, Reed BW, Taheri ML, Armstrong MR, King WE, Browning ND, Campbell GH, Science, 321, 1472 (2008)
  20. Barmak K, Michaelsen C, Lucadamo G, J. Mater. Res., 12, 133 (1997)
  21. Gunduz IE, Fadenberger K, Kokonou M, Rebholz C, Doumanidis CC, Ando T, J. Appl. Phys., 105 (2009)
  22. Knepper R, Snyder MR, Fritz G, Fisher K, Knio OM, Weihs TP, J. Appl. Phys., 105 (2009)
  23. Trenkle JC, Koerner LJ, Tate MW, Gruner SM, Weihs TP, Hufnagel TC, Appl. Phys. Lett., 93 (2008)
  24. Fadenberger K, Gunduz IE, Tsotsos C, Kokonou M, Gravani S, Brandstetter S, Bergamaschi A, Schmitt B, Mayrhofer PH, Doumanidis CC, Rebholz C, Appl. Phys. Lett., 97 (2010)
  25. Pun GPP, Mishin Y, Philos. Mag., 89, 3245 (2009)
  26. Cherukara MJ, Vishnu KG, Strachan A, Phys. Rev. B, 856 (2012)
  27. Rothhaar U, Oechsner H, Scheib M, Muller R, Phys. Rev. B, 61, 974 (2000)
  28. Shin YK, Kwak H, Zou CY, Vasenkov AV, van Duin ACT, J. Phys. Chem. A, 116(49), 12163 (2012)
  29. Plimpton SJ, J. Comput. Phys., 117, 1 (1995)
  30. Weingarten NS, Mattson WD, Yau AD, Weihs TP, Rice BM, J. Appl. Phys., 1007 (2010)
  31. Sandoval L, Campbell GH, Marian J, Model. Simul. Mater. Sci. Eng., 22 (2014)
  32. Zhao S, Germann TC, Strachan A, Phys. Rev. B, 76 (2007)