화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 349-355, January, 2018
Experimental study of water recovery from flue gas using hollow micro-nano porous ceramic composite membranes
E-mail:
A new method of water recovery from flue gas with hollow micro-nano porous ceramic composite membranes has been put forward in order to deal with the evaporated wastewater from thermal power plants. The feasibility of this method has been investigated in theory, and ceramic membranes of different pore sizes in selective layer have been prepared for experiments. The achieved results indicate that the ceramic membrane with selective layer of 20 nm pore size is appropriate for different flue gas conditions. The amount of recovered water augments with the increasing relative humidity of gas. When the temperature of flue gas reaches 70 °C, the amount of recovered water is above 1 L/m2h and the recovery ratio can be up to 55%. This method has great potentiality in the application of water recovery from flue gas in thermal power plants.
  1. China Electricity Council, Annual Development Report on China’s Power Industry 2013, China Market Press, Beijing, 2013.
  2. Lei CY, Wang EL, Huang HY, J. Boiler Technol., 42, 5 (2011)
  3. Zhuang ZN, Li JR, Che DF, J. Therm. Energy Power Eng., 20, 69 (2005)
  4. Strand M, Pagels J, Szpila A, J. Energy Fuels, 16, 1499 (2002)
  5. Jia L, Peng XF, Sun JD, J. Heat Transf. Asian Res., 30, 571 (2001)
  6. Han X, Yan J, Karellas S, et al., Appl. Therm. Eng., 110, 442 (2016)
  7. Wang XS, Gas Membrane Technology, Chemical Industry Press, Beijing, 2010.
  8. Jee KY, Kim N, Lee YT, J. Ind. Eng. Chem., 44, 155 (2016)
  9. Kursun F, Isıklan N, J. Ind. Eng. Chem., 41, 91 (2016)
  10. Drioli E, Santoro S, Simone S, et al., React. Funct. Polym., 79(6), 1 (2016)
  11. Brunetti A, Santoro S, Macedonio F, et al., CLEAN-Soil Air Water, 42(8), 1145 (2014)
  12. Folkedahl BC, Weber GF, Collings ME, Office of Scientific & Technical Information Technical Reports, (2006).
  13. Fakharnezhad A, Keshavarz P, J. Ind. Eng. Chem., 34, 390 (2016)
  14. Shirazian S, Ashrafizadeh SN, J. Ind. Eng. Chem., 22, 132 (2015)
  15. Sijbesma H, Nymeijer K, van Marwijk R, Heijboer R, Potreck J, Wessling M, J. Membr. Sci., 313(1-2), 263 (2008)
  16. Wang D, Bao A, Kunc W, Liss W, J. Appl. Energy, 91, 341 (2012)
  17. Bao A, Wang D, Lin CX, Int. J. Heat Mass Transf., 84, 456 (2015)
  18. Wang D, Advanced Energy and Water Recovery Technology from Low Grade Waste Heat, Gas Technology Institute, p.10 2011.
  19. Wang D, Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas, Gas Technology Institute, p.17 2012.
  20. Wang D, Energy and Water Recovery with Transport Membrane Condenser, Gas Technology Institute, p. 42013.
  21. Macedonio F, Brunetti A, Barbieri G, et al., Ind. Eng. Chem. Res., 52, 1160 (2012)
  22. Macedonio F, Brunetti A, Barbieri G, et al., Sep. Purif. Technol., 181 (2017).
  23. Wang TT, Yue MW, Qi H, Feron PHM, Zhao SF, J. Membr. Sci., 484, 10 (2015)
  24. Zhao S, Yan S, Wang DK, et al., Appl. Therm. Eng., 113 (2016).
  25. Hu HW, Tang GH, Niu D, Sci. Rep. U. K., 6, 2727 (2727)
  26. Lin CX, Wang DX, Bao AA, Int. J. Heat Mass Transf., 60, 41 (2013)
  27. Chen HP, Zhou YN, Cao ST, et al., Appl. Therm. Eng., 110, 868 (2016)
  28. Zhou YN, Chen HP, Xie T, Wang B, An LS, Int. J. Heat Mass Transf., 112, 643 (2017)
  29. Bolto B, Hoang M, Xie Z, J. Water Res., 46, 259 (2012)
  30. Sajjan AM, Premakshi HG, Kariduraganavar MY, J. Ind. Eng. Chem., 25, 151 (2015)
  31. Sajjan AM, Kumar BKJ, Kittur AA, Kariduraganavar MY, J. Ind. Eng. Chem., 19(2), 427 (2013)
  32. Ahmada F, Lau KK, Lock SSM, Rafiq S, Khan AU, Lee M, J. Ind. Eng. Chem., 21(1), 1246 (2015)
  33. Sianipar M, Kim SH, Min C, Tijing LD, Shon HK, J. Ind. Eng. Chem., 34, 364 (2015)
  34. An S, Kim BS, Lee J, J. Ind. Eng. Chem., 33, 362 (2015)
  35. Ochando-Pulido JM, Verardo V, Segura-Carretero A, Martinez-Ferez A, J. Ind. Eng. Chem., 31, 132 (2015)
  36. Li XY, Wang YQ, Pan JF, Yang ZJ, He YB, Mondal AN, Xu TW, Sep. Purif. Technol., 151, 131 (2015)
  37. Li W, Xu XE, J. Ind. Eng. Chem., 50, 380 (1996)
  38. Fang Y, Novak PJ, Hozalski RM, Cussler EL, Semmens MJ, J. Membr. Sci., 231(1-2), 47 (2004)
  39. Zhao SF, Feron PHM, Xie ZL, et al., J. Membr. Sci., 462(2), 9 (2014)
  40. Lock SSM, Lau KK, Shariff AM, J. Ind. Eng. Chem., 21(21), 542 (2015)
  41. Horikawa T, Do DD, Nicholson D, Adv. Colloid Interface Sci., 169(1), 40 (2011)
  42. Uhlhorn RJR, Keizer K, Burggraaf AJ, J. Membr. Sci., 66(2), 259 (1992)