화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.11, 1105-1114, November, 2017
Systematic modulation of gelation dynamics of snakehead (Channa argus) skin collagen by environmental parameters
E-mail:
Gel matrices of mammalian collagen are routinely used as bioengineering materials and food thickening agents, for which the modulation of their mechanical properties is a key issue. However, little information is available regarding gel matrices based on fish-sourced collagen, which offer unique advantages for some applications. Here, a rheology assay, which is the most commonly used method for monitoring developing gels, was used to systematically reveal the influence of environmental parameters on the gelation dynamics and rheological properties of pepsin-soluble collagen (PSC) extracted from snakehead (Channa argus) skins. The gelation dynamics and equilibrium elastic moduli of PSC were affected by concentration, temperature, pH, buffer, and ion strength and type. SEM and TEM images of gels at different concentrations and incubation temperatures confirmed that the mechanical properties of PSC gels are directly related to the density, rather than size, of fibrils. Additionally, the relationship between the biological and mechanical properties of these collagen gels was also evaluated. The present study would facilitate a better understanding of the gelation of fish-sourced collagen and enable more precise control of the mechanical properties of these gel matrices.
  1. Traub W, Piez KA, Adv. Protein Chem., 25, 243 (1997)
  2. Friess W, Eur. J. Pharm. Biopharm., 45, 113 (1998)
  3. Gelse K, Poschl E, Aigner T, Adv. Drug Deliv. Rev., 55, 1531 (2003)
  4. Kadler KE, Hill A, Canty-Laird EG, Curr. Opin. Cell Biol., 20, 495 (2008)
  5. Silver FH, Freeman JW, Seehra GP, J. Biomech., 36, 1529 (2003)
  6. Wolf K, Lindert MT, Krause M, Alexander S, Riet JT, Willis AL, Hoffman RM, Figdor CG, Weiss SJ, Friedl P, J. Cell Biol., 201, 1069 (2013)
  7. Atala A, Lanza RP, Methods of Tissue Engineering, Academic Press, London, UK, 2002.
  8. Mori H, Shimizu K, Hara M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 33, 3230 (2013)
  9. Zhang M, Wu K, Li G, Int. J. Biol. Macromol., 49, 847 (2011)
  10. Yang Y, Kaufman LJ, Biophys. J., 96, 1566 (2009)
  11. Wallace DG, Rosenblatt J, Adv. Drug Deliv. Rev., 55, 1631 (2003)
  12. Zeng S, Zhang C, Lin H, Yang P, Hong P, Jiang Z, Food Chem., 116, 879 (2009)
  13. Kawaguchi Y, Kondo E, Kitamura N, Kazunobu A, Tanaka Y, Munekata M, Nagai N, Yasuda K, J. Mater. Sci. -Mater. Med., 22, 397 (2011)
  14. Yan M, Li B, Zhao X, Food Chem., 122, 1333 (2010)
  15. Zhang M, Liu W, Li G, Food Chem., 115, 826 (2009)
  16. Zhang J, Zou M, Zhang M, Wei B, Xu C, Xie D, Wang H, Food Biophys., 11, 380 (2016)
  17. Reddy GK, Enwemeka CS, Clin. Biochem., 29, 225 (1996)
  18. Raub CB, Suresh V, Krasieva T, Lyubovitsky J, Mih JD, Putnam AJ, Tromberg BJ, George SC, Biophys. J., 92, 2212 (2007)
  19. Jia Y, Wang H, Wang H, Li Y, Wang M, Zhou J, Food Sci. Biotechnol., 21, 1585 (2012)
  20. Winter HH, Chambon F, J. Rheol., 30, 367 (1986)
  21. Noitup P, Morrissey MT, Garnjanagoonchorn W, J. Food Biochem, 30, 547 (2006)
  22. Sang L, Wang X, Chen Z, Lu J, Gu Z, Li X, Carbohydr. Polym., 82, 1264 (2010)
  23. Cheng X, Gurkan UA, Dehen CJ, Tate MP, Hillhouse HW, Simpson GJ, Akkus O, Biomaterials, 29, 3278 (2008)
  24. Roeder BA, Kokini K, Sturgis JE, Robinson JP, VoytikHarbin SL, J. Biomech. Eng., 124, 214 (2002)
  25. Wood GC, Biochem. J., 75, 598 (1960)
  26. Stein AM, Vader DA, Weitz DA, Sander LM, Complexity, 16, 22 (2011)
  27. Williams BR, Gelman RA, Poppke DC, Piez KA, J. Biol. Chem., 253, 6578 (1978)
  28. Cooper A, Biochem. J., 118, 355 (1970)
  29. Rosenblatt J, Devereux B, Wallace DG, Biomaterials, 15, 985 (1994)
  30. Yang Y, Leone LM, Kaufman LJ, Biophys. J., 97, 2051 (2009)
  31. Achilli M, Mantovani D, Polymer, 2, 664 (2010)
  32. Peng B, Hao Y, Kang H, Han X, Peng C, Liu H, Carbohydr. Res., 345, 101 (2010)
  33. Wood GC, Keech MK, Biochem. J., 75, 588 (1960)
  34. Leikin S, Rau DC, Parsegian VA, Nat. Struct. Biol., 2, 205 (1995)
  35. Tiktopulo EI, Kajava AV, Biochemistry, 37, 8147 (1998)
  36. Mertz EL, Leikin S, Biochemistry, 43, 14901 (2004)
  37. Bensusan HB, J. Am. Chem. Soc., 82, 4995 (1960)
  38. Dick YP, Nordwig A, Arch. Biochem. Biophys., 117, 466 (1996)
  39. Zou M, Yang H, Wang H, Wang H, Zhang J, Wei B, Zhang H, Xie D, Int. J. Biol. Macromol., 92, 1175 (2016)
  40. Friedl P, Brocker EB, Cell Mol. Life Sci., 57, 41 (2000)