Korean Chemical Engineering Research, Vol.55, No.6, 837-845, December, 2017
염색산업단지 종합폐수처리용 재순환 통합시스템
Recirculating Integrated System for the Treatment of Authentic Integrated-textile-dyeing Wastewater from Dyeing Industrial Complex
E-mail:
초록
D염색공단의 폴리에스테르 알카리 감량폐수 및 호발폐수가 혼합된 실제 종합염색폐수를 처리하기 위하여 D염색공단의 종합폐수처리장 반송슬러지를 고정한 폐타이어담체를 충전한 재순환 유동상 바이오필터와 소성된 TiO2 코팅-glass bead를 광촉매담체로 적용한 UV/광촉매반응기를 결합한 재순환 통합시스템을 구축하여 운전하였다. 그 결과로서 재순환 통합시스템의 총 CODcr 제거율과 총 색도 제거율 추이는 각각 약 81% 및 55% 정도를 유지하였다. 이러한 재순환 통합시스템의 총 CODcr 및 총 색도 제거율의 제고효과는 각각 최대 약 7% 및 3%로 평가되었다. 재순환 통합시스템의 유동상 바이오필터 및 광촉매반응공정은 총 제거율에 대한 상대기여도로서 각각 총 CODcr 제거율의 약 94% 및 6%를 처리하고, 총 색도 제거율의 약 86% 및 14%를 처리하였다. 이와 같이 재순환 통합시스템의 광촉매반응공정에 서는 총 제거율에 대한 색도 제거율의 상대기여도가 CODcr 제거율의 상대기여도보다 약 2.4배 정도 컸다. 따라서 본 연구의 재순환 통합시스템에서 광촉매반응공정은 CODcr 제거보다 아조결합과 같이 염료에서 색을 나타내는 화학결합을 깨는 역할에 더욱 효율성이 있었다. 또한 본 연구의 재순환 통합시스템에서 각 단위공정들의 CODcr 및 색도 제거율이, 재순환 통합시스템의 총 CODcr 및 색도 제거율에 미치는 영향에 대한 모델식과 대수적 상관관계를 구하고 분석하였다.
A recirculating integrated system composed of a fluidized biofilter filled with waste-tire crumb media fixed with return sludge from wastewater treatment facility of D dyeing industrial center, and a UV/photocatalytic reactor packed with calcined TiO2 coated-glass beads as photocatalyst-support, was constructed and was run to treat authentic textile-dyeing wastewater from D-dyeing industrial center, which was mixed with an alkaline polyester-weight-reducing wastewater and a wastewater from sizing process. As a result, its total removal efficiency(RE(tot)) of CODcr and colors were ca. 81% and 55%, respectively. The synergy effect of the recirculating integrated system to enhance total removal efficiency( RE(tot)) of CODcr and colors were evaluated at most ca. 7% and 3%, respectively. The fluidized biofilter and the UV/photocatalytic reactor were responsible for ca. 94% and 6% of the total CODcr removal efficiency, respectively, and were also responsible for ca. 86% and 14% of the total color-removal efficiency, respectively. Thus, the degree of the UV/photocatalytic reactor-unit process’s contribution to RE(tot) of color, was about 2.4 times of that to RE(tot) of CODcr. Therefore, the UV/photocatalytic reactor facilitated the more effective elimination of colors by breaking down the chemical bonds oriented from colors of dyes such as azo-bond, than CODcr. In addition, the effect of the removal efficiency of each unit process(i.e., the fluidized biofilter or the UV/photocatalytic reactor) of the recirculating integrated system on RE(tot) of CODcr and colors, was analysed by establishing its model equation with an analytic correlation.
Keywords:Authentic integrated-textile-dyeing Wastewater;Fluidized biofilter;Photocatalytic reactor;Recirculating integrated system;CODcr;Color;Model equation
- Eren Z, J. Environ. Manage., 104, 127 (2012)
- Jin XC, Liu GQ, Xu ZH, Tao WY, Appl. Microbiol. Biotechnol., 74(1), 239 (2007)
- Kalra SS, Mohan S, Sinha A, Singh G, 2nd International Conference on Environmental Science and Development, Singapore (2011).
- Paprowicz J, Słodczyk S, Environ. Technol. Lett., 9, 271 (1988)
- Wu CH, Kuo CY, Chang CL, J. Hazard. Mater., 153(3), 1052 (2008)
- Fahmi, Nishihima W, Okada M, Enviro 2002 & IWA 3rd World Water Conference, Melbourne, Australia (2002).
- Scheck CK, Frimmel FH, Water Res., 29(10), 2346 (1995)
- Yang SY, Wang P, Yang X, Shan L, Zhang WY, Shao XT, Niu R, J. Hazard. Mater., 179(1-3), 552 (2010)
- Chang SH, Chuang SH, Li HC, Liang HH, Huang LC, J. Hazard. Mater., 166(2-3), 1279 (2009)
- Peternel IT, Koprivanac N, Bozic AML, Kugic HM, J. Hazard. Mater., 148(1-2), 477 (2007)
- Akyol A, Bayramoglu M, Chem. Eng. Process., 47(12), 2150 (2008)
- Zhang YG, MA LL, Li JL, YU Y, Environ. Sci. Technol., 41, 6264 (2007)
- Harrelkas F, Paulo A, Alves MM, El Khadir L, Zahraa O, Pons MN, van der Zee FP, Chemosphere, 72, 1816 (2008)
- Chebli D, Fourcade F, Brosillon S, Nacef S, Amrane A, Environ. Technol., 32(5), 507 (2011)
- Shah MP, American J. Microbiological Research, 1(4), 92 (2013)
- Jafari N, Karsa-Kermanshahi R, Soudi MR, Mahvi AH, Gharavi S, Iranian Journal of Environmental Health Sciences & Engineering, 9(33), 1-7(2012).
- Zhang X, Wu Y, Xiao G, Tang Z, Wang M, Liu F, Zhu X, PLoS One, 12(3), e01727 (2017)
- Ma L, Zhang WX, Environ. Sci. Technol., 42(15), 5384 (2008)
- Lin YT, Weng CH, Chen FY, Sep. Purif. Technol., 64(1), 26 (2008)
- Shu HY, Chang MC, Chang CC, J. Hazard. Mater., 167(1-3), 1178 (2009)
- Perey JR, Chiu PC, Huang CP, Cha DK, Water Environ. Res., 74(3), 221 (2002)
- Saxe JP, Lubenow BL, Chiu PC, Huang CP, Cha DK, Water Environ. Res., 78(1), 19 (2006)
- Choi Y, Park B, Cha DK, Korean J. Chem. Eng., 32(9), 1812 (2015)
- Lee EJ, Lim KH, Korean Chem. Eng. Res., 53(1), 71 (2015)
- Lim KH, Jung YJ, Park LS, Min KS, Korean Chem. Eng. Res., 39(5), 600 (2001)
- Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70 (2005)
- Lee EJ, Lim KH, J. Chem. Eng. Jpn., 46(9), 636 (2013)
- Muruganandham M, Swaminathan M, Dyes Pigment., 68, 133 (2006)