- Previous Article
- Next Article
- Table of Contents
Korean Chemical Engineering Research, Vol.55, No.6, 874-880, December, 2017
탈황, 재생공정 및 흡착속도 추정을 포함한 디젤용 탈황반응기 설계
Designing Desulfurization Reactor by Numerical Modeling including Desulfurization, Regeneration Processes, and Adsorption Rate Estimation
E-mail:
초록
본 연구에서는 시판중인 흡착제 및 단열재 정보를 활용하여 탈황반응 및 재생공정을 모사함으로써 100 kW급 연료전지용 디젤 탈황반응기에 적용이 가능한 반응기 디자인 및 공정 조건을 도출하였다. 흡착제의 실험결과를 흡착속도론에 적용하여 흡착제 포화도에 따른 흡착속도를 도출하였으며 수치해석을 통해 검증하였다. 반응기 크기에 따른 탈황성능변화 예측을 통해 100 kW급 연료전지용 반응기 크기를 결정하였다. 결정된 최적 반응기 크기를 이용해 반응기에서 단위 시간 당 처리할 수 있는 디젤의 양을 최대로 할 수 있는 유량을 분석하여 목표 농도에 따른 최적 운전 조건을 도출하였다. 또한 재생공정에 대한 분석을 수행하여 크기가 증가한 반응기의 경우에도 재생공정에 문제가 없음을 확인하였다. 본 연구를 통해 도출된 결과들은 향후 공정 시뮬레이션 프로그램에 적용하여 최종 공정설계 및 경제성 평가를 진행할 예정이다.
In this study, we performed numerical simulation of the adsorptive desulfurization reactor for a 100 kW fuel cell. Using experimental results and the adsorption kinetics theory, the adsorption rate of sulfur in diesel was estimated and verified by numerical analysis. By analyzing the performance of desulfurization according to reactor size, the optimal reactor size was determined. By maximizing processed diesel amount, optimal diesel flow rate was determined. Regeneration process was also confirmed for the obtained optimal reactor size. The present work will be utilized to design a diesel desulfurization reactor for a fuel cell used in a ship by further process modeling and economic analysis.
- Eyring V, Kohler HW, Van Aardenne J, Lauer A, J. Geophys. Res., 110, D17305 (2005)
- Wan Z, Zhu M, Chen S, Sperling D, Nature, 530, 7590 (2016)
- Aicher T, Lenz B, Gschnell F, Groos U, Federici F, Caprile L, Parodi L, J. Power Sources, 154(2), 503 (2006)
- Permatasari A, Fasahati P, Ryu JH, Liu JJ, Korean J. Chem. Eng., 33(12), 3381 (2016)
- Nam JG, J. Korean Soc. Mar. Eng., 37(8), 855 (2013)
- Lin LG, Zhang YZ, Zhang HY, Lu FW, J. Colloid Interface Sci., 360(2), 753 (2011)
- Kwon SG, Liu J, Im DJ, Clean Technol., 21(4), 229 (2015)
- Ko DH, Kim M, Moon I, Choi DK, Chem. Eng. Sci., 57(1), 179 (2002)
- Lei M, Vallieres C, Grevillot G, Latifi MA, Ind. Eng. Chem. Res., 52(22), 7526 (2013)
- Ho HP, Kim WH, Lee SY, Son HR, Kim NH, Kim JK, Park JY, Woo HC, Clean Technol., 20(1), 88 (2014)
- http://www.jmprotech.com/htc-johnson-matthey.
- Hodges SC, Johnson GC, Soil. Sci. Soc. Am. J., 51(2), 323 (1987)
- Kyung DH, Kim JY, Jo SH, Park YC, Moon JH, Yi CK, Baek JI, Korean Chem. Eng. Res., 50(3), 492 (2012)
- http://www.kccworld.co.kr/products/mktprd.do?MKT=MC&PRD=G01.
- Shin DW, Kim LH, J. Energy Eng., 22(2), 226 (2013)
- Kim CH, Chun SH, Shin DW, Kim LK, Lee HC, Baek YS, Korean Chem. Eng. Res., 50(2), 328 (2012)