- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.28, No.6, 601-606, December, 2017
양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리
Principle of Anodic TiO2 Nanotube Formations
E-mail:
초록
금속 표면처리의 대표적인 기술인 양극산화를 통하여 일차원 나노구조 금속 산화물을 형성할 수 있다. 여러 가지 금속 산화물 중에 기능성이 뛰어난 TiO2에 대한 관심의 증대로 TiO2 나노 튜브를 이용한 연구가 많이 이루어지고 있다. 본 총설논문에서는 지금까지 연구되어 밝혀진 TiO2 나노 튜브가 형성원리에 대한 해설논문으로 전기화학적 측면에서의 양극 산화 공정에 대한 이해를 통하여 나노 튜브 형성을 위한 전기적 조건, 화학적 조건, 물리적 조건에 대하여 다루었다. 특히 TiO2 나노 튜브 성장의 핵심 요소인 산화물의 형성과 에칭의 평형관계, 다공성 구조의 형성 원인을 다루었다. 나아가 전해질 조건에 따른 TiO2 나노 튜브의 형태학적 고찰을 함으로써 향후 양극 산화를 통한 TiO2 나노튜브 응용에 관한 연구를 하는 연구자에게 이해하기 쉽게 설명하고자 하였다.
One-dimensional nanostructured metal oxide can be formed through an anodic oxidation, which is a typical technique of metal surface treatment. Studies on TiO2 nanotubes have been widely carried out with increasing interests in TiO2, which has an excellent functionality among various metal oxides. The present article reviews the principles of formation of TiO2 nanotubes, which have been studied so far. In particular, the article discussed the equilibrium relationship between the oxide formation and etching, which is a key parameter of TiO2 nanotube growth, and the formation of the porous structure. Furthermore, morphological considerations of TiO2 nanotubes according to electrolyte conditions will be explained to the researchers who will study the application of TiO2 nanotubes formed through the anodic oxidation in the future.
- Kim SJ, Lim JH, Choi J, Polym. Sci. Technol., 17(6), 742 (2006)
- Masuda H, Fukuda K, Science, 268(5216), 1466 (1995)
- Masuda H, Hasegwa F, Ono S, J. Electrochem. Soc., 144(5), L127 (1997)
- Jessensky O, Muller F, Gosele U, Appl. Phys. Lett., 72, 1173 (1998)
- Li AP, Muller F, Birner A, Nielsch K, Gosele U, J. Appl. Phys., 84, 6023 (1998)
- Fujishima A, Honda K, Nature, 238, 37 (1972)
- Fujishima A, Zhang X, Tryk DA, Surf. Sci. Rep., 63, 515 (2008)
- O’Regan B, Gratzel M, Nature, 353, 737 (1991)
- Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Nanoscale, 2, 45 (2010)
- Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M, Surf. Interface Anal., 27, 629 (1999)
- Assefpour-Dezfuly M, Vlachos C, Andrews EH, J. Mater. Sci., 19, 3626 (1984)
- Beranek R, Hildebrand H, Schmuki P, Solid-State Lett., 6, B12 (2003)
- Gong D, Grimes CA, Varghese OK, Hu WC, Singh RS, Chen Z, Dickey EC, J. Mater. Res., 16, 3331 (2001)
- Roy P, Berger S, Schmuki P, Angew. Chem.-Int. Edit., 50, 2904 (2011)
- Kowalski D, Kim D, Schmuki P, Nano Today, 8(3), 235 (2013)
- Lee K, Mazare A, Schmuki P, Chem. Rev., 114(19), 9385 (2014)
- Guntherschulze A, Betz H, Z. Phys., 92, 367 (1934)
- Hebert KR, Albu SP, Paramasivam I, Schmuki P, Nat. Mater., 11(2), 162 (2012)
- Lee K, Kim J, Kim H, Lee Y, Tak Y, Kim D, Schmuki P, J. Korean Phys. Soc., 54, 1027 (2009)
- Vanhumbeeck JF, Proost J, 209th ECS Meeting, May 7-12, Denver, USA (2006).
- Vanhumbeeck JF, Proost J, Electrochim. Acta, 53(21), 6165 (2008)
- Ono S, Saito M, Asoh H, Electrochim. Acta, 51(5), 827 (2005)
- Garcia-Vergara SJ, Skeldon P, Thompson GE, Habazaki H, Electrochim. Acta, 52(2), 681 (2006)
- Albu SP, Roy P, Virtanen S, Schmuki P, Isr. J. Chem., 50, 453 (2010)
- Habazaki H, Fushimi K, Shimizu K, Skeldon P, Thompson GE, Electrochem. Commun., 9, 1222 (2007)
- Berger S, Albu SP, Schmidt-Stein F, Hildebrand H, Schmuki P, Hammond JS, Paul DF, Reichlmaier S, Surf. Sci., 605, L57 (2011)
- Wei W, Berger S, Hauser C, Meyer K, Yang M, Schmuki P, Electrochem. Commun., 12, 1184 (2010)
- Macak J, Tsuchiya H, Schmuki P, Angew. Chem.-Int. Edit., 44, 2100 (2005)
- Macak J, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P, Angew. Chem.-Int. Edit., 44, 7463 (2005)
- Tsuchiya H, Macak JM, Taveira L, Schmuki P, Chem. Phys. Lett., 410(4-6), 188 (2005)
- Tsuchiya H, Macak JM, Taveira L, Schmuki P, ECS Trans., 1, 351 (2006)
- Berger S, Jakubka F, Schmuki P, Electrochem. Commun., 10, 1916 (2008)
- Tsuchiya H, Schmuki P, Electrochem. Commun., 7, 49 (2005)
- Sieber I, Kannan B, Schmuki P, Electrochem. Solid State Lett., 8(3), J10 (2005)
- Sieber IV, Schmuki P, J. Electrochem. Soc., 152(9), C639 (2005)
- El-Sayed HA, Birss VI, Nano Lett., 9, 1350 (2009)
- Albu SP, Ghicov A, Schmuki P, Phys. Status Solidi Rapid Res. Lett., 3, 64 (2009)
- Burleigh TD, Schmuki P, Virtanen S, J. Electrochem. Soc., 156(1), C45 (2009)
- Mohapatra SK, John SE, Banerjee S, Misra M, Arrays Chem. Mater., 21, 3048 (2009)
- Sieber I, Hildebrand H, Friedrich A, Schmuki P, Electrochem. Commun., 7, 97 (2005)
- Wei W, Lee K, Shaw S, Schmuki P, Chem. Commun., 48, 4244 (2012)
- Lee CY, Lee K, Schmuki P, Angew. Chem.-Int. Edit., 52, 2077 (2013)
- Yang Y, Albu SP, Kim D, Schmuki P, Angew. Chem.-Int. Edit., 50, 9071 (2011)
- Hahn R, Macak JM, Schmuki P, Electrochem. Commun., 9, 947 (2007)
- Wei W, Kirchgeorg R, Lee K, So S, Schmuki P, Phys. Status Solidi Rapid Res. Lett., 5, 394 (2011)
- Kim D, Lee K, Roy P, Birajdar BI, Spiecker E, Schmuki S, Angew. Chem.-Int. Edit., 48, 9326 (2009)
- Lee K, Kim D, Roy P, Paramasivam I, Birajdar BI, Spiecker E, Schmuki P, J. Am. Ceram. Soc., 132, 1478 (2010)
- Lee K, Kim D, Schmuki P, Chem. Commun., 47, 5789 (2011)
- Lee K, J. Electrochem. Soc., 164(2), E5 (2017)