화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.6, 607-618, December, 2017
배출가스의 질소산화물과 이산화황 동시 저감 기술
Various Technologies for Simultaneous Removal of NOx and SO2 from Flue Gas
E-mail:
초록
석탄화력발전소를 포함한 다양한 산업설비에서 유해 대기오염물질이 배출되고 있으며, 이러한 오염물질은 인체 건강과 자연 생태계에 영향을 준다. 특히, 질소산화물(NOx)와 이산화황(SO2)은 인체 건강에 악영향을 주는 미세먼지(PM2.5) 형성에 원인물질로 알려져 있다. 이러한 NOx와 SO2 배출을 저감하기 위해서 선택적 촉매 환원(SCR)과 습식 탈황 공정(WFGD)으로 결합된 혼합 시스템이 사용되고 있으나, 높은 설치비용 및 운전비용을 필요로 하며, 유지보수의 문제점, 기술적인 한계점을 가지고 있다. 최근에 이러한 혼합 시스템을 대체하기 위한 NOx, SO2 동시 저감 기술이 연구되고 있으며, 제안된 기술들은 흡수, 고도 산화(AOPs), 저온 플라즈마(NTP), 전자 빔(EB) 등이 있다. 이러한 기술들은 강한 수용성 산화제 및 산화력을 가진 화학활성종에 의한 NOx, SO2를 HNO3, H2SO4 형태로의 산화 반응, 기-액 계면에서 HNO3와 H2SO4 흡수 반응, 화학 첨가제에 의한 중화 반응을 기본으로 하고 있다. 본 논문에서는 각각의 동시 저감공정에 대한 기술적인 특징과 대용량 처리 공정 응용을 위한 향후 전망을 정리하였다.
Harmful air pollutants are exhausted from the various industrial facilities including the coal-fired thermal power plants and these substances affects on the human health as well as the nature environment. In particular, nitrogen oxides (NOx) and sulfur dioxide (SO2) are known to be causative substances to form fine particles (PM2.5), which are also deleterious to human health. The integrated system composed of selective catalytic reduction (SCR) and wet flue gas desulfurization (WFGD) have been widely applied in order to control NOx and SO2 emissions, resulting in high investment and operational costs, maintenance problems, and technical limitations. Recently, new technologies for the simultaneous removal of NOx and SO2 from the flue gas, such as absorption, advanced oxidation processes (AOPs), non-thermal plasma (NTP), and electron beam (EB), are investigated in order to replace current integrated systems. The proposed technologies are based on the oxidation of NOx and SO2 to HNO3 and H2SO4 by using strong aqueous oxidants or oxidative radicals, the absorption of HNO3 and H2SO4 into water at the gas-liquid interface, and the neutralization with additive reagents. In this paper, we summarize the technical improvements of each simultaneous abatement processes and the future prospect of technologies for demonstrating large-scaled applications.
  1. The World Bank Group, Data for fossil fuel energy consumption, www.worldbank.org (2014).
  2. Ye JH, Shang J, Li Q, Xu WW, Liu J, Feng X, Zhu T, J. Hazard. Mater., 271, 89 (2014)
  3. Sun WY, Ding SL, Zeng SS, Su SJ, Jiang WJ, J. Hazard. Mater., 192(1), 124 (2011)
  4. Park HW, Choi S, Park DW, J. Hazard. Mater., 285, 117 (2015)
  5. Zhang J, Zhang R, Chen X, Tong M, Kang WZ, Guo SP, Zhou YB, Lu J, Ind. Eng. Chem. Res., 53(15), 6450 (2014)
  6. Skalaska K, Miller JS, Ledakowicz S, Sci. Total Environ., 408, 3976 (2010)
  7. Fang P, Cen CP, Wang XM, Tang ZJ, Tang ZX, Chen DS, Fuel Process. Technol., 106, 645 (2013)
  8. Xu F, Luo Z, Cao W, Wang P, Wei B, Gao X, Fang M, Cen K, J. Environ. Sci., 21, 328 (2009)
  9. Wang ZH, Zhou JH, Zhu YQ, Wen ZC, Liu JZ, Cen K, Fuel Process. Technol., 88(8), 817 (2007)
  10. Patsias AA, Nimmo W, Gibbs BM, Williams PT, Fuel, 84(14-15), 1864 (2005)
  11. Guo L, Shu Y, Gao J, Energy Procedia, 17, 397 (2012)
  12. Wang L, Zhao WR, Wu ZB, Chem. Eng. J., 132(1-3), 227 (2007)
  13. Zhao Y, Xu P, Fu D, Huang J, Yu H, J. Environ. Sci., 18, 281 (2006)
  14. Zhang Q, Removal Technology of SO2 and NOx in Flue Gas and Engineering Instances, Chemical Industry Press, Beijing, China (2002).
  15. Barbooti MM, Ibraheem NK, Ankosh AH, J. Environ. Prot., 2, 175 (2011)
  16. Fang P, Cen CP, Tang ZX, Zhong PY, Chen DS, Chen ZH, Chem. Eng. J., 168(1), 52 (2011)
  17. Pourmohammadbagher A, Jamshidi E, Ale-Ebrahim H, Dabir B, Mehrabani-Zeinabad M, Chem. Eng. Process., 50(8), 773 (2011)
  18. Chien TW, Chu H, J. Hazard. Mater., B80, 43 (2000)
  19. Lee HK, Deshwal BR, Yoo KS, Korean J. Chem. Eng., 22(2), 208 (2005)
  20. Pourmohammadbagher A, Jamshidi E, Ale-Ebrahim H, Dabir S, Ind. Eng. Chem. Res., 50(13), 8278 (2011)
  21. Mondal MK, Chelluboyana VR, Chem. Eng. J., 217, 48 (2013)
  22. Jin DS, Deshwal BR, Park YS, Lee HK, J. Hazard. Mater., B135, 412 (2006)
  23. Xia D, He C, Zhu L, Huang Y, Dong H, Su M, Asi MA, Bian D, J. Environ. Monit., 13, 864 (2011)
  24. Zhao Y, Han YH, Guo TX, Ma TZ, Energy, 67, 652 (2014)
  25. Adewuyi YG, Sakyi NY, Ind. Eng. Chem. Res., 52(33), 11702 (2013)
  26. Raghunath CV, Pandey P, Saini R, Mondal MK, Perspect. Sci., 8, 699 (2016)
  27. Zhao Y, Hao RL, Wang TH, Yang CY, Chem. Eng. J., 273, 55 (2015)
  28. Liemans I, Thomas D, Energy Procedia, 37, 1348 (2013)
  29. Hutson ND, Krzyzynska R, Srivastava RK, Ind. Eng. Chem. Res., 47(16), 5825 (2008)
  30. Hao RL, Zhang YY, Wang ZY, Li YP, Yuan B, Mao XZ, Zhao Y, Chem. Eng. J., 307, 562 (2017)
  31. Zhao Y, Hao RL, Qi M, Chem. Eng. J., 269, 159 (2015)
  32. Zhao Y, Guo TX, Chen ZY, Du YR, Chem. Eng. J., 160(1), 42 (2010)
  33. Zhao Y, Hao RL, Yuan B, Jiang JJ, J. Hazard. Mater., 301, 74 (2016)
  34. Raghunath CV, Mondal MK, Chem. Eng. J., 314, 537 (2017)
  35. Zhao Y, Wen XY, Guo TX, Zhou JH, Fuel Process. Technol., 128, 54 (2014)
  36. Wang S, Zhang Q, Zhang G, Wang Z, Zhu P, J. Energy Inst., 90, 522 (2017)
  37. Zhao Y, Hao RL, Xue FM, Feng YA, J. Hazard. Mater., 321, 500 (2017)
  38. Zhao Y, Hao RL, Guo Q, Feng YN, Fuel Process. Technol., 137, 8 (2015)
  39. Chien TW, Chu H, Hsueh HT, J. Environ. Eng.-ASCE, 129, 967 (2003)
  40. Liu YX, Wang Q, Yin YS, Pan JF, Zhang J, Chem. Eng. Res. Des., 92(10), 1907 (2014)
  41. Hao RL, Zhao Y, Yuan B, Zhou SH, Yang S, J. Hazard. Mater., 318, 224 (2016)
  42. Liu YX, Zhang J, Sheng CD, Zhang YC, Zhao LA, Chem. Eng. J., 162(3), 1006 (2010)
  43. Sun Y, Zwolinska E, Chmielewski AG, Environ. Sci. Technol., 46, 119 (2016)
  44. Obradovic BM, Sretenovic GB, Kuraica MM, J. Hazard. Mater., 185(2-3), 1280 (2011)
  45. Yu CJ, Xu F, Luo ZY, Cao W, Wei B, Gao X, Fang MX, Cen KF, J. Electrostat., 67, 829 (2009)
  46. Kuroki T, Takahashi M, Okubo M, Yamamoto T, IEEE Trans. Ind. Appl., 38, 1204 (2002)
  47. Radoiu MT, Martin DI, Calinescu I, J. Hazard. Mater., B97, 145 (2003)
  48. Huang LW, Dang YX, Chin. J. Chem. Eng., 19(3), 518 (2011)
  49. Wang M, Sun Y, Zhu T, IEEE Trans. Plasma Sci., 41, 312 (2013)
  50. Nasonova A, Pham HC, Kim DJ, Kim KS, Chem. Eng. J., 156(3), 557 (2010)
  51. Pham HC, Kim KS, Ind. Eng. Chem. Res., 52(15), 5296 (2013)
  52. Nasonova A, Kim KS, Catal. Today, 211, 90 (2013)
  53. Park HW, Cho IJ, Choi S, Park DW, IEEE Trans. Plasma Sci., 42, 2364 (2014)
  54. Yoon HJ, Park HW, Park DW, Energy Fuels, 30(4), 3289 (2016)
  55. Guo S, Lv L, Zhang J, Chen X, Tong M, Kang W, Zhou Y, Lu J, Chem. Ind. Chem. Eng. Q., 21, 305 (2015)
  56. Sun CL, Zhao N, Wang HQ, Wu ZB, Energy Fuels, 29(5), 3276 (2015)
  57. Kikuchi R, Pelovski Y, Process Saf. Environ. Protect., 87(2), 135 (2009)
  58. Calinescu I, Martin D, Chmielewski A, Ighigeanu D, Radiat. Phys. Chem., 85, 130 (2013)
  59. Namba H, Tokunaga O, Hashimoto S, Tanaka T, Ogura Y, Doi Y, Aoki S, Izutsu M, Radiat. Phys. Chem., 46, 1103 (1995)
  60. Chmielewski AG, Tyminski B, Licki J, Iller E, Zimek Z, Dobrowolski A, Radiat. Phys. Chem., 42, 663 (1993)
  61. Chmielewski AG, Tyminski B, Licki J, Iller E, Zimek Z, Radzio B, Radiat. Phys. Chem., 46, 1067 (1995)
  62. Chmielewski AG, Iller E, Zimek Z, Licki J, Radiat. Phys. Chem., 40, 321 (1992)
  63. Chang JS, Looy PC, Nagai K, Yoshioka T, Aoki S, Maezawa A, IEEE Trans. Ind. Appl., 32, 131 (1996)
  64. Doi Y, Nakanishi I, Konno Y, Radiat. Phys. Chem., 57, 495 (2000)
  65. Kim J, Kim Y, Han B, Doutzkinov N, Jeong KY, J. Korean Phys. Soc., 59, 3494 (2011)
  66. Pawelec A, Chmielewski AG, Licki J, Han B, Kim J, Kunnummal N, Fageeha OI, Fuel Process. Technol., 145, 123 (2016)
  67. Tan E, Unal S, Dogan A, Letournel E, Pellizzari F, Radiat. Phys. Chem., 119, 109 (2016)
  68. Basfar AA, Fageeha OI, Kunnummal N, Chmielewski AG, Licki J, Pawelec A, Zimek Z, Warych J, Int. J. Nucl. Res., 55, 271 (2010)