화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.6, 655-662, December, 2017
가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응에 대한 무기염의 영향
Effect of Inorganic Salts on Photocatalytic Degradation of Rhodamine B Using Sulfide Photocatalysts under Visible Light Irradiation
E-mail:
초록
CdS 및 CdZnS 황화물계 광촉매를 단순 침전법으로 제조하고, 가시광선 조사하에서의 로다민 B 분해반응에 대한 광촉 매로서의 활성을 조사하였다. 이때 KCl, NaCl, K3PO4, Na3PO4 등의 4가지 무기염 첨가가 반응에 미치는 영향을 조사하 였으며, 특히 광촉매 반응 과정에서의 K+, Na+, Cl- 그리고 PO4 3- 이온의 역할에 중점을 두고 연구를 진행하였다. 첨가 되는 무기염들은 전체 광촉매 반응에 큰 영향을 미칠 수 있다는 것을 알 수 있었다. 특히 무기염 중의 양이온에 비해 음이온이 반응속도에 상대적으로 큰 영향을 미치는 것으로 나타났다. 본 연구의 반응조건하에서 PO4 3- 음이온은 광촉매 반응속도를 크게 감소시키지만 Cl- 이온은 오히려 반응속도를 증가시켰다. 따라서 광촉매 반응을 이용한 폐수처리에 있어서는 다른 첨가물질의 영향을 고려하는 것도 필요한 것으로 판단된다.
Sulfide photocatalysts, CdS and CdZnS, were synthesized using a simple precipitation method and their photocatalytic activities were evaluated by the degradation of rhodamine B under visible light irradiation. The effects of four inorganic salt additives, KCl, NaCl, K3PO4, and Na3PO4, on the photocatalytic reaction were examined and the role of K+, Na+, Cl- and PO4 3- ions during photocatalytic reaction was discussed. The added inorganic salts were shown to have a remarkable effect on the photocatalytic reaction. It was also found that the anions in inorganic salts have a much more profound effect on the reactionr ate, as compared to the cations. Under the present experimental conditions, PO4 3- revealed a significant inhibitory effect on the degradation rate whereas Cl- enhanced the rate slightly. This work pointed out that the consideration of additive effects is needed in the photocatalytic reaction for wastewater treatment.
  1. Faria PCC, Orfao JJM, Pereira MFR, Water Res., 38, 2043 (2004)
  2. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ, Int. J. Environ. Sci. Technol., 10, 855 (2013)
  3. Khanna A, Shetty V, Environ. Sci. Pollut. Res., 20, 5692 (2013)
  4. Socha A, Sochocka E, Podsiadly R, Sokolowaka J, Dyes Pigment., 73, 390 (2007)
  5. Bora T, Sathe P, Laxman K, Dobretsov S, Dutta J, Catal. Today, 284, 11 (2017)
  6. Li XZ, Li FB, Yang CL, Ge WK, J. Photochem. Photobiol. A-Chem., 141, 209 (2001)
  7. Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C, Chem. Commun., 2142-2143 (2003).
  8. Ganesh RS, Sharma SK. Durgadevi E, Navaneethan M, Binitha HS, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y, Kim DY, Superlattices Microstruct., 104, 247 (2017)
  9. Zhu HY, Jiang R, Xiao L, Chang YH, Guan YJ, Li XD, Zeng GM, J. Hazard. Mater., 169(1-3), 933 (2009)
  10. Xie SL, Lu XH, Zhai T, Gan JY, Li W, Xu M, Yu MH, Zhang YM, Tong YX, Langmuir, 28(28), 10558 (2012)
  11. Li NX, Zhou BY, Guo PH, Zhou JC, Jing DW, Int. J. Hydrog. Energy, 38(26), 11268 (2013)
  12. Wang X, Tian H, Cui X, Zheng W, Liu Y, Dalton Trans., 43, 12894 (2014)
  13. Li W, Li D, Meng S, Chen W, Fu X, Shao Y, Environ. Sci. Technol., 45, 2987 (2011)
  14. Budarz JF, Turolla A, Piasecki AF, Bottero JY, Antonelli M, Wiesner MR, Langmuir, 33(11), 2770 (2017)
  15. Dugandzic AM, Tomasevic AV, Radisic MM, Sekuljica NZ, Mijin DZ, Petrovic SD, J. Photochem. Photobiol. A-Chem., 336, 146 (2017)
  16. Pekakis PA, Xekoukoulotakis NP, Mantzavinos D, Water Res., 40, 1276 (2006)
  17. Guillard C, Lachheb H, Houas A, Ksibi M, Elaloui E, Herrmann JM, J. Photochem. Photobiol. A-Chem., 158, 27 (2003)
  18. Bhati M, Singh G, Bioresour. Technol., 88(3), 221 (2003)
  19. Asharf SS, Rauf MA, Alhadrami S, Dyes Pigment., 69, 74 (2006)
  20. Khan ZR, Zulfequar M, Khan MS, J. Mater. Sci., 46(16), 5412 (2011)
  21. Wang X, Liu G, Chen ZH, Li F, J. Mater. Res., 25, 39 (2010)
  22. Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J, ACS Catal., 3, 882 (2013)
  23. Zhang K, Jing DW, Chen QY, Guo LJ, Int. J. Hydrog. Energy, 35(5), 2048 (2010)
  24. Kozlova EA, Markovskaya DV, Cherepanova SV, Saraev AA, Gerasimov EY, Perevalov TV, Kaichev VV, Parmon VN, Int. J. Hydrog. Energy, 39(33), 18758 (2014)
  25. Cui WQ, Ma SS, Liu L, Hu JS, Liang YH, McEvoy JG, Appl. Surf. Sci., 271, 171 (2013)
  26. Li Y, Tang L, Peng S, Li Z, Lu G, CrystEngComm, 14, 6974 (2012)
  27. Tai GA, Zhou JX, Guo WL, Nanotechnology, 21, 175601 (2010)
  28. Jing D, Guo L, J. Phys. Chem. B, 110, 1139 (2006)
  29. Wang W, Zhu W, Xu H, J. Phys. Chem., 112, 16754 (2008)
  30. Chen F, Jia D, Cao Y, Jin X, Liu A, Ceram. Int., 41, 14604 (2015)
  31. Min Y, Fan J, Xu Q, Zhang S, J. Alloy. Compd., 609, 46 (2014)
  32. Yu K, Yang SG, He H, Sun C, Gu CG, Ju YM, J. Phys. Chem. A, 113(37), 10024 (2009)
  33. Khan AM, Mehmooda A, Sayed M, Nazar MF, Ismail B, Khan RA, Ullah H, Rehman HMA, Khane AY, Khan AR, J. Mol. Liq., 236, 395 (2017)
  34. Guillard G, Puzenet E, Lachheb H, Houas A, Herrmann JM, Int. J. Photoenergy, 7, 1 (2005)
  35. Rioja N, Zorita S, Penas FJ, Appl. Catal. B: Environ., 180, 330 (2016)
  36. Makita M, Harata A, Chem. Eng. Process., 47(5), 859 (2008)
  37. Chen C, Zhao W, Li J, Zhao J, Environ. Sci. Technol., 36, 3604 (2002)
  38. Zhuang JD, Dai WX, Tian QF, Li ZH, Xie LY, Wang JX, Liu P, Shi XC, Wang DH, Langmuir, 26(12), 9686 (2010)
  39. Yao W, Zhang B, Huang C, Ma C, Song X, Xu Q, J. Mater. Chem., 22, 4050 (2012)
  40. Yang CC, Huang CL, Cheng TC, Lai HT, Int. Biodeterior. Biodegrad., 102, 116 (2015)
  41. Yuan RX, Ramjaun SN, Wang ZH, Liu JS, Chem. Eng. J., 192, 171 (2012)
  42. Chen HY, Zahra O, Bouchy M, J. Photochem. Photobiol. A-Chem., 108, 37 (1997)
  43. Piscopo A, Robert D, Weber JV, Appl. Catal. B: Environ., 35(2), 117 (2001)
  44. Yuan RX, Wang Z, Hu Y, Wang B, Gao S, Chemosphere, 109, 106 (2014)
  45. Yan J, Wang K, Xu H, Qian J, Liu W, Yang X, Li H, Chin. J. Catal., 34, 1876 (2013)