화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.6, 705-713, December, 2017
개선된 광촉매 효과를 위한 수열법에 의한 삼원계 Bi2WO6-GO-TiO2 나노복합체의 쉬운 합성 방법
New Synthesis of the Ternary Type Bi2WO6-GO-TiO2 Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-catalytic Effect
E-mail:
초록
독창적 물질인 Bi2WO6-GO-TiO2 나노복합체를 쉬운 수열법에 의해 성공적으로 합성하였다. 수열반응을 하는 동안, 그래핀 시트 위에 Bi2WO6와 TiO2를 도포하였다. 합성한 Bi2WO6-GO-TiO2 복합체형 광촉매는 X-선 회절법(XRD), 주사전 자현미경(SEM), 에너지 분산 X-선(EDX) 분석, 투과전자현미경(TEM), 라만분광법, UV-Vis 확산반사 분광법(UV-vis-DRS), 및 X-선 광전자분광기(XPS)에 의하여 특성화하였다. Bi2WO6 나노입자는 불규칙한 dark-square block 나노 플페이트 형상을 보였으며, 이산화티탄 나노입자는 퀜텀 도트 사이즈로 그래핀 시트 위 표면을 덮고 있었다. 로다민 비의 분해는 농도감소의 측정과 함께 UV 분광법에 의하여 관찰하였다. 합성된 물질의 광촉매 반응은 Langmuir-Hinshelwood 모델과 띠 이론으로 설명하였다.
A novel material, Bi2WO6-GO-TiO2 composite, was successfully synthesized using a facile hydrothermal method. During the hydrothermal reaction, the loading of Bi2WO6 and TiO2 nanoparticles onto graphene sheets was achieved. The obtained Bi2WO6-GO-TiO2 composite photo-catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis-DRS), and X-ray photoelectron spectroscopy (XPS). The Bi2WO6 nanoparticle showed an irregular dark-square block nanoplate shape, while TiO2 nanoparticles covered the surface of the graphene sheets with a quantum dot size. The degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) dyes in an aqueous solution with different initial amount of catalysts was observed by UV spectrophotometry after measuring the decrease in the concentration. As a result, the Bi2WO6-GO-TiO2 composite showed good decolorization activity with MB solution under visible light. The Bi2WO6-GO-TiO2 composite is expected to become a new potential material for decolorization activity. Photocatalytic reactions with different photocatalysts were explained by the Langmuir Hinshelwood model and a band theory.
  1. Hu C, Lu T, Chen F, J. Chin. Adv. Mater. Soc., 1, 21 (2013)
  2. Zhu L, Meng ZD, Chen ML, Zhang FJ, Choi JG, Park JY, Oh WC, J. Photo. Sci., 1, 69 (2010)
  3. Zhang H, Lv X, Li Y, Wang Y, Li J, ACS Nano, 4, 380 (2010)
  4. Kim SR, Parvez MK, Chhowalla M, Chem. Phys. Lett., 483(1-3), 124 (2009)
  5. Low W, Boonamnuayvitaya V, J. Environ. Manage., 127, 142 (2013)
  6. Kim HI, Moon GH, Monllor-Satoca D, Park Y, Choi W, J. Phys. Chem., 116(1), 1535 (2012)
  7. Zhao D, Sheng G, Chen C, Wang X, Appl. Catal. B: Environ., 111-112, 303 (2012)
  8. Karimi L, Yazdanshenas ME, Khajavi R, Rashidi A, Mirjalili M, Cellulose, 21, 3813 (2014)
  9. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH, Acc. Chem. Res., 46(10), 2211 (2013)
  10. Kikuchia Y, Sunadaa K, Iyodaa T, Hashimoto K, Fujishimaa A, J. Photochem. Photobiol. A-Chem., 106, 51 (1997)
  11. Zhang ZJ, Wang WZ, Shang M, Yin WZ, J. Hazard. Mater., 177(1-3), 1013 (2010)
  12. Ren J, Wang W, Zhang L, Chang J, Hu SP, Catal. Commun., 10, 1940 (2009)
  13. Cui Z, Zeng D, Tang T, Liu J, Xie C, Catal. Commun., 11, 1054 (2010)
  14. Ren J, Wang WZ, Sun SM, Zhang L, Chang J, Appl. Catal. B: Environ., 92(1-2), 50 (2009)
  15. Zhang Y, Zhang Y, Fei L, Jiang X, Pan C, Wang Y, J. Am. Chem. Soc., 94, 4157 (2011)
  16. Xu QC, Wellia DV, Ng YH, Amal R, Tan TTY, J. Phys. Chem., 115(15), 7419 (2011)
  17. Zhou F, Zhu Y, J. Adv. Ceram., 1(1), 72 (2012)
  18. Fu HB, Zhang LW, Yao WQ, Zhu YF, Appl. Catal. B: Environ., 66(1-2), 100 (2006)
  19. Zhang YP, Fei LF, Jiang XD, Pan CX, Wang Y, J. Am. Ceram. Soc., 94(12), 4157 (2011)
  20. Min YL, Zhang K, Chen YC, Zhang YG, Sep. Purif. Technol., 86, 98 (2012)
  21. Sun Z, Guo J, Zhu S, Mao L, Ma J, Zhang D, Nanoscale, 6, 2186 (2014)
  22. Silva CG, Faria JL, Appl. Catal. B: Environ., 101(1-2), 81 (2010)
  23. Nguyen DCT, Cho KY, Oh WC, Appl. Surf. Sci., 412, 252 (2017)
  24. Yang J, Wang X, Zhao X, Dai J, Mo S, J. Phys. Chem., 119(6), 3068 (2015)
  25. Li Y, Li X, Li J, Water Res., 40, 1119 (2006)
  26. Gao E, Wang W, Shang M, Xu J, Phys. Chem. Chem. Phys., 13, 2887 (2011)
  27. Dong F, Wang ZY, Sun YJ, Ho WK, Zhang HD, J. Colloid Interface Sci., 401, 79 (2013)
  28. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH, Chem. Eng. J., 170(1), 226 (2011)
  29. Nguyen DCT, Cho KY, Oh WC, RSC Adv., 7, 29284 (2017)
  30. Min S, Lu G, J. Phys. Chem., 116(48), 25415 (2012)
  31. Zou JP, Ma J, Luo JM, Yu J, He JK, Meng YT, Luo Z, Bao SK, Liu HL, Luo SL, Luo XB, Chen TC, Suib SL, Appl. Catal. B: Environ., 179, 220 (2015)
  32. Colon G, Lopez SM, Hidalgoa MC, Nvioa JA, Chem. Commun., 46, 4809 (2016)
  33. Nguyen DCT, Cho KY, Oh WC, Nanotubes and Carbon Nanostructures DOI: 10.1080/1536383X.2017.1344648 (2017).