화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.1, 125-132, January, 2018
라이오셀/폴리락트산 복합재료의 기계적, 열적 특성에 미치는 라이오셀 직물의 실란처리 영향
Effect of Silane Treatment of Lyocell Fabric on the Mechanical and Thermal Properties of Lyocell/Poly(lactic acid) Composites
E-mail:
초록
3-Glycidoxypropyltrimethoxy silane(GPS)의 농도를 0.5, 1, 3 wt%로 각각 달리하여 라이오셀 직물을 처리한 다음, 라이오셀 직물과 직물 사이에 poly(lactic acid)(PLA) 필름을 적층하여 압축성형법으로 라이오셀/PLA 복합재료를 제조하고 그들의 기계적, 열적 특성을 조사하였다. PLA의 인장특성, 굴곡특성, 열변형온도, 열치수안정성은 라이오셀 직물의 보강효과에 의해 매우 크게 증가하였다. 이들 특성은 복합재료 성형 전 라이오셀 직물에 행한 실란 처리에 의해 더욱 증가되었으며, GPS 농도가 1 wt%일 때 가장 크게 향상되었다. 라이오셀/PLA 복합재료의 기계적, 열적 특성 향상에 미치는 실란처리의 영향에 대한 결과는 라이오셀 단섬유 인장특성 그리고 복합재료를 구성하는 라이오셀 섬유와 PLA 매트릭스 사이의 계면결합에 미치는 실란처리 영향에 대한 결과와 일치하였다.
Lyocell fabrics were treated with 3-glycidoxypropyltrimethoxy silane (GPS) at different concentrations of 0.5, 1, and 3 wt%. Lyocell/PLA composites were then fabricated by a compression molding process using a film-stacking manner, which was stacking poly(lactic acid) (PLA) films between the lyocell fabrics, and their mechanical and thermal properties were explored. The tensile and flexural properties, heat deflection temperature, and thermo-dimensional stability of PLA were largely increased due to a reinforcing effect by the lyocell fabrics. The properties were further increased by silane treatment done to the lyocell fabrics prior to composite fabrication, showing the highest improvement with 1 wt% GPS. The effect of silane treatment on the improvement of the mechanical and thermal properties was consistent with the effect of silane treatment on the interfacial bonding between the lyocell fiber and the PLA matrix of the composite as well as on the lyocell single fiber tensile properties.
  1. Woodings CR, Int’l. Biol. Macromol., 17, 305 (1995)
  2. Lee JY, Thesis MS, Kumoh National Institute of Technology, Gumi, Korea (2009).
  3. Milanovica J, Schiehserb S, Milanovicc P, Potthastb A, Kostic M, Carbohydr. Polym., 98, 444 (2013)
  4. Johnson K, Sh AZ, Rennecker SH, Glasser WG, Compos. Pt. A-Appl. Sci. Manuf., 39, 470 (2008)
  5. Lee JY, Kim JM, Cho D, Park JK, J. Adhes. Interf., 10, 106 (2009)
  6. Pickering KL, Efendy, MGA, Le TM, Compos. Pt. A-Appl. Sci. Manuf., 83, 98 (2016)
  7. Mohanty AK, Misra M, Hinrichsen G, Macromol. Mater. Eng., 1, 276 (2000)
  8. Cho D, Lee SG, Park WH, Han SO, Polym. Sci. Technol., 13(4), 460 (2002)
  9. Mohanty AK, Misra M, Drzal LT, Taylor & Francis, Boca Raton, Chapter 1 (2005).
  10. Cho D, Kim HJ, Elast. Compos., 44, 13 (2009)
  11. Seo JM, Cho D, Park WH, Han SO, Hwang TW, Choi CH, Jung SJ, J. Biobased Mater. Bioener., 1, 331 (2007)
  12. Han SO, Ahn HJ, Cho D, Composites Part B, 41, 491 (2010)
  13. Woo Y, Cho D, Polym. Korea, 40(4), 568 (2016)
  14. Lee HY, Cho DW, Polym. Korea, 41(4), 719 (2017)
  15. Shinoda H, Asou Y, Kashima T, Kato T, Tseng Y, Yagi T, Polym. Degrad. Stabil., 80, 241 (2003)
  16. Lu L, Yaszemski MJ, Mikos AG, Biomaterials, 22, 3345 (2001)
  17. Oksman M, Skrifvars M, Selin JF, Compos. Sci. Technol., 63, 1317 (2003)
  18. Ji SG, Cho D, Park WH, Lee BC, Macromol. Res., 18(9), 919 (2010)
  19. Ji SG, Hwang JH, Cho D, Kim HJ, J. Adhes. Sci. Technol., 27(12), 1359 (2013)
  20. Woo Y, Cho D, Adv. Compos. Mater., 22, 451 (2013)