화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.183, No.4, 1375-1389, 2017
Optimal Production of a Rhodococcus erythropolis ATCC 4277 Biocatalyst for Biodesulfurization and Biodenitrogenation Applications
Rhodococcus sp. has a broad catabolic diversity and unique enzymatic capabilities, and it is able to adapt under extreme conditions. Thereby, the production of this remarkable bacterium has a great biotechnological and industrial importance. In this sense, we sought to improve the R. erythropolis ATCC 4277 growth through a central composite design, by varying the components of nutrient medium (glucose, malt extract, yeast extract, CaCO3), temperature, and agitation. It was found that the concentrations of glucose and malt extract are not statistically significant, being reduced of 4.0 and 10.0 g L-1 to 2.0 and 5.0 g L-1, respectively. The CaCO3 concentration and temperature were also diminished of 2.0 to 1.16 g L(-1)and 28 to 23.7 A degrees C, respectively. Optimal growth conditions provided a 240% increase in final biomass concentration, an increment in specific growth rate, and a growth yield coefficient about five times greater. Application of the optimal conditions in biodesulfurization and biodenitrogenation processes showed that desulfurization capability is not associated with optimal growth conditions; however, it was achieved a 47% of nitrogen removal in the assay containing 10% (w/w) of heavy gas oil.