Applied Microbiology and Biotechnology, Vol.101, No.23-24, 8485-8497, 2017
Interactions of plant growth-promoting rhizobacteria and soil factors in two leguminous plants
Although the rhizomicrobiome has been extensively studied, little is known about the interactions between soil properties and the assemblage of plant growth-promoting microbes in the rhizosphere. Herein, we analysed the composition and structure of rhizomicrobiomes associated with soybean and alfalfa plants growing in different soil types using deep Illumina 16S rRNA sequencing. Soil pH, P and K significantly affected the composition of the soybean rhizomicrobiome, whereas soil pH and N had a significant effect on the alfalfa rhizomicrobiome. Plant biomass was influenced by plant species, the composition of the rhizomicrobiome, soil pH, N, P and plant growth stage. The beta diversity of the rhizomicrobiome was the second most influential factor on plant growth (biomass). Rhizomicrobes associated with plant biomass were identified and divided into four groups: (1) positively associated with soybean biomass; (2) negatively associated with soybean biomass; (3) positively associated with alfalfa biomass; and (4) negatively associated with alfalfa biomass. Genera assemblages among the four groups differentially responded to soil properties; Group 1 and Group 2 were significantly correlated with soil pH and P, whereas Group 3 and Group 4 were significantly correlated with soil N, K and C. The influence of soil properties on the relative abundance of plant biomass-associated rhizomicrobes differed between soybean and alfalfa. The results suggest the rhizomicrobiome has a pronounced influence on plant growth, and the rhizomicrobiome assemblage and plant growth-associated microbes are differentially structured by soil properties and leguminous plant species.
Keywords:Plant growth-promoting rhizobacteria;Illumina sequencing;Plant-microbial interactions;Rhizosphere;Leguminous plants