Applied Surface Science, Vol.434, 204-210, 2018
A facile FeBr3 based photoATRP for surface modification of mesoporous silica nanoparticles for controlled delivery cisplatin
Mesoporous silica nanoparticles (MSNs) should be one of the most important materials for biomedical application owing to their high specific surface area, regular porous structure, adjustable pore size and chemical inert. However, the biomedical applications of unmodified MSNs are largely impeded for their poor hydrophilicity and lack of functional groups. In this work, a novel photo-initiated atom transfer radical polymerization (ATRP) strategy has been reported for modified mesoporous silica nanoparticles (MSNs) with hydrophilicility copolymers using FeBr3 as the novel photocatalyst and itaconic acid (IA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) as monomers. Because of the hydrophilicity and anticancer agent cis-dichlorodiamineplatinum(II) (CDDP) loading capacity of poly(MPC-co-IA), the controlled drug delivery applications MSNs-NH2-poly(MPC-co-IA) composites toward CDDP were further investigated. A series of characterization results demonstrated that MSNs-NH2-poly(MPC-co-IA) composites can be successfully fabricated through the novel photo-initiated ATRP. MSNs-NH2-poly(MPC-co-IA) composites showed obvious enhancement of water dispersibility, desirable biocompatibility, high drug loading capability, making them great potential for controlled drug delivery of CDDP. Moreover, as compared with the traditional ATRP, that using the transition metal ions and organic ligands as the catalysis systems in elevated temperature, our method provides a more facile, benign and cost-effective route for fabrication of multifunctional MSNs with great potential for biomedical applications. Finally, this FeBr3 based photoATRP strategy should be further extended for the fabrication of many other polymeric composites owing to its good monomer adoptability. (C) 2017 Elsevier B.V. All rights reserved.