Applied Surface Science, Vol.434, 540-548, 2018
Nanospectroscopy of thiacyanine dye molecules adsorbed on silver nanoparticle clusters
The adsorption of thiacyanine dye molecules on citrate-stabilized silver nanoparticle clusters drop-cast onto freshly cleaved mica or highly oriented pyrolytic graphite surfaces is examined using colocalized surface-enhanced Raman spectroscopy and atomic force microscopy. The incidence of dye Raman signatures in photoluminescence hotspots identified around nanoparticle clusters is considered for both citrate- and borate-capped silver nanoparticles and found to be substantially lower in the former case, suggesting that the citrate anions impede the efficient dye adsorption. Rigorous numerical simulations of light scattering on random nanoparticle clusters are used for estimating the electromagnetic enhancement and elucidating the hotspot formation mechanism. The majority of the enhanced Raman signal, estimated to be more than 90%, is found to originate from the nanogaps between adjacent nanoparticles in the cluster, regardless of the cluster size and geometry. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Surface enhanced Raman scattering;Atomic force microscopy;Citrate capped silver nanoparticles;Thiacyanine dye