Applied Surface Science, Vol.432, 170-175, 2018
Anisotropic growth mechanism of tungsten diselenide domains using chemical vapor deposition method
Anisotropic transition metal dichalcogenide (TMDC) domains have stimulated a growing interest mainly due to their electronic properties that depend on the size, shape, and edge structures of the domains. In this work, we investigated the anisotropic morphogenesis and edge terminations of tungsten diselenide (WSe2) domains grown on sapphire substrates by chemical vapor deposition (CVD) using tungsten oxide (WO3) and selenium (Se) powders as precursors. We varied the amount of Se powder and growth temperature during the CVD process, which in turn caused variations in the growth mechanism and kinetic energies of precursors. We succeeded in synthesizing hexagonal, square, circular, and triangular anisotropic WSe2 domains. They were characterized using scanning electron microscopy (SEM), Raman spectroscopy, photoluminescence (PL) analyses, and atomic force microscopy (AFM). Furthermore, we proposed the growth mechanism of anisotropic WSe2 domains with different edge terminations based on experimental observations through scanning tunneling microscope (STM). (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Transition metal dichalcogenide;WSe2;Chemical vapor deposition;Anisotropic morphology;Kinetic energy