Applied Surface Science, Vol.430, 505-514, 2018
Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity
Bi2MoO6 nanosheets with exposed {010} facets were selectively synthesized through hydrothermal method by adjusting the pH value in the presence of cetyltrimethyl ammonium bromide (CTAB) as the templates. The effects of CTAB content and hydrothermal conditions on the morphologies and crystal phases of the products were determined by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectroscopy (DRS), Fourier-transform infrared spectroscopy (FTIR), Raman spectrometry, and Brunauer-Emmett-Teller surface area analyses. It is found that Bi2MoO6 nanosheets with relatively large particle sizes (plate length 0.5-3 mu m) and special anisotropic growth along the {010} plane can be obtained from an alkaline hydrothermal environment. The band gap of Bi2MoO6 can be fine-tuned from 2.30 to 2.57 eV by adjusting the pH value of hydrothermal solution. The pH value has a significant effect on the composition of hydrothermal precursors, which results in Bi2MoO6 nanosheets with different ratio of {010} faces, especially the formation of Bi2O3 in the primary stage of the hydrothermal treatment is a key factor for the exposure of {010} facets. The visible-light-driven photocatalytic activities of the Bi2MoO6 products with different ratio of {010} facets exposed are investigated through the degradation of Rhodamine B, oxytetracycline, and tetracycline. Bi2MoO6 nanosheets synthesized at pH 10.0 with highest {010} facet exposed ratio exhibited highly efficient visible light photocatalytic activity for pollutant decomposition, which can be mainly attributed to the flake structures, the crystallinity and most importantly, the exposed {010} facet which generate high concentration of center dot O2-. (C) 2017 Elsevier B.V. All rights reserved.