화학공학소재연구정보센터
Applied Surface Science, Vol.428, 258-263, 2018
Synthesis and characterization of polymer-coated manganese ferrite nanoparticles as controlled drug delivery
In this study, monodisperse and superparamagnetic manganese ferrite (MnFe2O4) nanoparticles have been synthesized by a one-pot sonochemical method using polyvinylpyrrolidone (PVP) as stabilizer. The as-prepared MnFe2O4 nanoparticles were investigated systematically by TEM, XRD, FTIR, XPS, SQUID and MTT. The TEM observation showed that the PVP-coated MnFe2O4 nanoparticles had uniform dispersion with narrow particle size distribution. The magnetization curves demonstrated superparamagnetic properties of the coated MnFe2O4 nanoparticles with good hydrophilicity at room temperature. The in vitro cytotoxicity experiments exhibited negligible cytotoxicity of the obtained PVP-coated MnFe2O4 nanoparticles even at the high concentration of 150 mu g/mL after 24 h treatment. More importantly, anti-cancer model drug of doxorubicin hydrochloride (DOX) was loaded on the surface of MnFe2O4 nanoparticles. The drug loading capacity of the developed nanocarrier reached 0.45 mg/mg and the loaded DOX exhibited interesting pH-dependent release behavior. In conclusion, the as-prepared PVP-coated MnFe2O4 nanoparticles were proposed as a potential candidate for controlled drug delivery. (C) 2017 Elsevier B.V. All rights reserved.