Applied Surface Science, Vol.428, 1082-1088, 2018
Role of projectile energy and surface work function on charge transfer of negative ions grazing scattering on dissociated H2O-covered Cu(110)
Shifted Fermi sphere model and parallel velocity effects on clean metals have been verified by a number of previous studies. However, for fast F- and Cl- ions scattering on dissociated water covered Cu(110) at grazing incidence, the negative-ion fraction is projectile dependent and monotonically increases with the increase of impact velocity, which cannot be explained by the conventional parallel velocity effect. The positive-ion fraction increases with the increase of perpendicular velocity, which can be well described by the exponential scaling. Positive ions efficiently formed at large perpendicular velocities strongly suppress the negative ion yield at short distances from the surface, so that negative ions are only formed at large distances. In addition, the large surface work function further promotes a transition between two kinds of parallel velocity effects. The calculation taking into account these contributions is in rough agreement with the experimental data. (C) 2017 Elsevier B.V. All rights reserved.