Applied Surface Science, Vol.427, 1065-1075, 2018
Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties
Zwitterionic poly(arylene ether sulfone) (PAES-NS) was synthesized via copolymerization by using a bisphenol monomer with a pyridine group. The chemical structures of the copolymers were confirmed by using Fourier transform infrared (FTIR) and H-1 nuclear magnetic resonance (NMR) spectroscopy; the copolymers showed good thermal stability. A series of polyphenysulfone (PPSU)/PAES-NS blend ultrafiltration (UF) membranes was prepared via conventional immersion precipitation phase inversion methods The morphologies of the modified membranes were investigated by scanning electron microscopy (SEM). The surface hydrophilicity of the UF membranes was studied by water contact angle measurement, indicating that the zwitterionic group increased the membrane hydrophilicity. UF of solvated model pollutants using the membranes showed a significant reduction of the irreversible adsorption of the foulants, illustrating the excellent anti-fouling properties of the membrane. The water flux of the PAES-NS membrane was significantly enhanced, being almost three times higher than that of the pristine PPSU membrane, with retention of a high rejection level. After three UF cycles, the water flux recovery of the PAES-NS membrane was as high as 96%. (C) 2017 Elsevier B.V. All rights reserved.