Biochemical and Biophysical Research Communications, Vol.494, No.1-2, 358-364, 2017
Caerulin-induced pro-inflammatory response in macrophages requires TRAF3-p38 signaling activation
Acute pancreatitis is a common threat to human health. Caerulin provokes severe inflammations, causing injuries to surrounding pancreatic cells. TNF receptor-associated factor 3 (TRAF3) is a highly versatile regulator of immune response. The current study aims to understand the potential effect of TRAF3 on caerulin-induced pro-inflammatory responses. In the primary-cultured mouse bone marrow-derived macrophages (BMDMs), caerulin induced TRAF3 protein stabilization, which formed a complex with mitogen-activated protein kinase kinase 3 (MKK3) to mediate downstream p38 activation. Lentiviral shRNA-mediated TRAF3 stable knockdown significantly attenuated caerulin-induced MKK3-p38 activation and production of several key pro-inflammatory cytokines, including interleukin-1 beta (IL-1 beta), tumor necrosis factor-a (TNF-alpha) and IL-17. Remarkably, TRAF3 knockdown in caerulin-stimulated BMDMs also alleviated cytotoxicity to Panc02 and primary mouse pancreatic cells. Thus, TRAF3 is required for caerulin-induced p38 activation and macrophage-mediated pro-inflammatory responses. TRAF3 expression in macrophages could be a novel therapeutic target protein for the treatment of acute pancreatitis. (C) 2017 Elsevier Inc. All rights reserved.