Biochemical and Biophysical Research Communications, Vol.493, No.2, 979-984, 2017
Leptin positively regulates MUC5AC production and secretion induced by interleukin-13 in human bronchial epithelial cells
Mucus hypersecretion and plugging of lower respiratory tract airways due to mucus plugs have long been recognized as the leading cause of the morbidity and mortality in asthma. MUC5AC protein is a major component of airway mucus. Here, we showed that interleukin (IL)-13 induced MUC5AC production and secretion, and leptin expression in the human bronchial epithelial cell line-16 (HBE16) cells in a concentration-dependent manner. Leptin knockdown suppressed MUC5AC production and secretion induced by IL-13. We further investigated the molecular mechanism by which leptin functioned, and found that leptin regulated IL-13-induced MUC5AC production and secretion via the JAK2-STAT3 pathway. Subsequently, Muncl8b, a limiting component of the exocytic machinery of airway epithelial and mast cells, was found that when knockdown, MUC5AC secretion was significantly inhibited. SABiosciences ChIP search tool identified three STAT3 binding sites with Muncl8b promoter. Chromatin immunoprecipitation analysis further confirmed that Stat3 upregulated Muncl8b expression by directly binding to its promoter. These data suggested that leptin promotes MUC5AC secretion via JAK2-STAT3-MUNC18b regulatory network. Taken together, our data highlight a positive feedback role and molecular mechanism for leptin in the control of MUC5AC production and secretion from airway epithelial cells stimulated by IL-13, which encourage further exploration of the therapeutic potentials of manipulating leptin in the treatment of mucus hypersecretion in chronic inflammation lung diseases. (C) 2017 Elsevier Inc. All rights reserved.