Energy, Vol.139, 315-328, 2017
The application of household appliances' flexibility by set of sequential uninterruptible energy phases model in the day-ahead planning of a residential microgrid
In this work, an accurate energy consumption model of household appliances based on Set of Sequential Uninterruptible Energy Phases (SSUEP) is applied to day-ahead energy management framework of a residential microgrid in order to effectively activate time-based demand response programs. The homes in the microgrid include the essential and/or shiftable household appliances accurately modeled by the SSUEP. These homes are also equipped with the photovoltaic systems, battery energy storages and electric vehicles. The residential microgrid is assumed to be connected to a smart grid such that bidirectional exchange of electric power would be possible. Being aware of the amount of power demand for the appliances and the day-ahead prices of the energy, the consumer provides the required energy from the photovoltaic systems, battery energy storages and electric vehicles (by Vehicle-to-Home and Vehicle-to-Grid capabilities). Moreover, using the flexibility of the shiftable loads, the consumer can be involved in the demand response strategies to reduce the costs. This flexibility is a result of delaying or anticipating the start time and the inter-phase delay modeled by the SSUEP. Lastly, the effects of the accurate SSUEP model on the day-ahead planning of the residential microgrid will be investigated by various scenarios. (C) 2017 Elsevier Ltd. All rights reserved.
Keywords:Residential microgrid;Demand response program;SSUEP modeling;Electric vehicle;Household appliances operation control