Fuel, Vol.214, 381-385, 2018
Emissions of particulate associated oxygenated and native polycyclic aromatic hydrocarbons from vehicles powered by ethanol/gasoline fuel blends
Emission factors for oxygenated polycyclic aromatic hydrocarbons (OPAHs) and PAHs have been determined from two different fuel flexible light duty vehicles operated at -7 degrees C in the New European Driving Cycle (NEDC) and at +22 degrees C in the Artemis Driving Cycle (ADC). Three different gasoline/ethanol blends, commercially available in Sweden, were tested i.e., gasoline E5, with 5% v/v ethanol and ethanol fuel E85 with 85% v/v ethanol and winter time quality E70 with 70% v/v ethanol, respectively. The results showed greatly increased emissions of both OPAHs and PAHs at cold engine start conditions (-7 degrees C in the NEDC) compared to warm engine start (+ 22 degrees C in the ADC). For the OPAHs, higher average total emission factors were obtained when running on E85 compared to E5 at both cold 2.72 mu g/km vs 1.11 mu g/km and warm 0.19 mu g/km vs 0.11 mu g/km starting conditions with the highest emissions when using E70 at -7 degrees C 4.12 mu g/km. The same trend was found for the PAHs at cold engine start with higher average total emission factors when using ethanol fuel 71.5 mu g/km and 60.0 mu g/km for E70 and E85, respectively compared to gasoline E5 (20.2 mu g/km). Slightly higher average total PAH emissions were obtained when operating at + 22 degrees C with E5 compared to with E85 1.23 mu g/km vs 0.72 mu g/km.