International Journal of Energy Research, Vol.41, No.13, 1914-1931, 2017
Simulation of a solar-biogas hybrid energy system for heating, fuel supply, and power generation
Biogas production from organic wastes has been widely utilized for several decades, but maintaining right temperature for anaerobic bacteria is a challenge. In order to overcome the inhibition of the bacteria growth and biogas production due to the low temperature, a solar-biogas hybrid energy system for heating, fuel supply, and power generation has been proposed for converting domestic garbage into biogas in a rural area of China. In this system, the solar energy has been included as one of the heating sources during an anaerobic digestion process. A mathematical model has been developed to evaluate the influence of system operating characteristics. Based on the simulation results, the biogas production rate, thermal efficiency, temperature of the digester, energy distributions in the system, optimal operating parameters, economic efficiency, and thermodynamic characteristics of the system were analyzed. The impact of solar irradiation on the efficiency of the system was also studied. According to the results, in cloudy days, the reactor volume and solar collector area greatly influenced the steady energy supply. In winter, the produced biogas is mostly utilized by the aided boiler to maintain the proper organic mixture temperature in the bioreactor. Heat loss from bioreactor dramatically increases the organic mixture volume. Per simulation, the longest return on the investment of this type of the biogas system is about 5.54 years, and the shortest return on the investment is less than 4 years if the battery is removed and the electric grid can be used. Therefore, in this study, the feasibility of a hybrid energy system for converting domestic garbage into energy has been validated. Copyright (C) 2017 John Wiley & Sons, Ltd.