International Polymer Processing, Vol.32, No.5, 545-554, 2017
Crystallization of Polymers in Processing Conditions: An Overview
In polymer processing, crystallization generally occurs in complex, inhomogeneous and coupled mechanical (flow, pressure), thermal (cooling rate, temperature gradient) and geometrical (surface of processing tools) conditions. A first route to understand crystallization in processing conditions is to design model experiments to isolate the specific influence of a given parameter. The emphasis will be laid here on the influence of: (i) shear flow through rheo-optical measurements using the commercial RheoScope module, (ii) high cooling rates obtained with the modified hot stage Cristaspeed (up to 2000 degrees C min(-1)) and (iii) high pressures in the original Cristapress cell (up to 200 MPa). Numerical simulation is also a useful tool to understand and predict the coupled phenomena involved in crystallization. Based on Avrami's ideas and equations, a general differential formulation of overall crystallization kinetics has been proposed by Haudin and Chenot (2004). It is able to treat both isothermal and non-isothermal cases, and has been extended to crystallization in a limited volume without and with surface nucleation inducing transcrystallinity.