화학공학소재연구정보센터
Journal of Crystal Growth, Vol.480, 108-114, 2017
Growth and characterization of n-AlGaN 1-D structures with varying Al composition using u-GaN seeds
Like all the ternary alloys in III-nitride materials family, aluminum gallium nitride (AlGaN) has unique band gap tuning property which enables the alloy to be suitable for many opto-electronic applications. The direct band gap of AlGaN can be tuned from 3.4 to 6.2 eV by changing the composition. In this article, the growth of ternary n-AlGaN micro and nano structures on Si (1 1 1) substrate is demonstrated via 2-step growth method employing metal organic chemical vapor deposition. During the growth flow of Trimethygallium is varied to modulate the final Al/Ga ratio. After the growth, various morphological, crystalline and optical characterizations are carried out to probe in the properties of the grown structures. Recorded X-ray diffraction patterns reveal that the realized structures are wurtzite single crystalline n-AlGaN having a near homogeneous Al distribution and validated by energy dispersive X-ray spectroscopy. Low temperature cathodoluminescence spectra show band edge emission in deep UV region which enables the grown n-AlGaN structures to efficiently find opto-electronic applications in the aforementioned region. Finally, planar photoconductive devices are fabricated using the grown 1-D structures and photocurrent evolution is measured. Structure bearing highest Al content shows a manifold enhancement in photo activity compared to other grown samples. Absolute photoresponsivities of the grown samples are calculated to be 301.47, 116 and 38.13 mA/W which is in accord with the findings of low temperature cathodoluminescence investigation. Therefore, it can be concluded that the successful realization of n-AlGaN 1-D structures varying Al content facilitates the further developments of the field concerning nano-and opto-electronic devices. (C) 2017 Elsevier B.V. All rights reserved.