화학공학소재연구정보센터
Journal of Materials Science, Vol.53, No.1, 716-726, 2018
Magnetoresistance of graphite intercalated with cobalt
The results of experimental studies of magnetoresistance, resistivity and Hall coefficient of graphite intercalated with cobalt are presented. A highly oriented pyrolitic graphite was chosen as source for intercalation. A two-step method of synthesis was used for graphite intercalation compound (GIC) obtaining. The electro- and magnetoresistance and Hall coefficient were measured in temperature range of (1.6-293) K and magnetic field up to 5 T. The effects of asymmetric and linear relatively to magnetic field magnetoresistance have been revealed for GIC. It was shown that the linear magnetoresistance is not saturated with increasing magnetic field up to 5 T and is not dependent on temperature. The effect of linear magnetoresistance in GIC was explained within Abrikosov model of quantum magnetoresistance.