Journal of Physical Chemistry B, Vol.121, No.43, 10105-10117, 2017
Combining Explicit Quantum Solvent with a Polarizable Continuum Model
A promising approach for accurately modeling both short-range and long-range solvation effects is to combine explicit quantum mechanical (QM) solvent with a classical polarizable continuum model (PCM), but the best PCM for these combined QM/classical calculations is relatively unexplored. We find that the choice of the solvation cavity is very important for obtaining physically correct results since unphysical double counting of solvation effects from both the QM solvent and the classical dielectric can occur with a poor choice of cavity. We investigate the dependence of electronic excitation energies on the definition of the PCM cavity and the self-consistent reaction field method, comparing results to large-scale explicit QM solvent calculations. For excitation energies, we identify the difference between the ground and excited state dipole moments cavity. Using a linear response PCM approach combined with QM solvent, we show that excitation energies are best modeled by a solvent excluded surface or a scaled van der Waals surface. For the aqueous solutes studied here, we find that a scaled van der Waals surface defined by universal force field radii scaled by a factor of 1.5 gives reasonable excitation energies. When using an external iteration state-specific PCM approach, however, the excitation energies are most accurate with a larger PCM cavity, such as a solvent accessible surface.