화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.101, No.2, 928-948, 2018
Thermodynamic assessment of the pseudoternary Na2O-Al2O3-SiO2 system
Vitrified high-level radioactive waste that contains high concentrations of Na2O and Al2O3, such as the waste stored at the Hanford site, can cause nepheline to precipitate in the glass upon cooling in the canisters. Nepheline formation removes oxides such as Al2O3 and SiO2 from the host glass, which can reduce its chemical durability. Uncertainty in the extent of precipitated nepheline necessitates operating at an enhanced waste loading margin, which increases operational costs by extending the vitrification mission as well as increasing waste storage requirements. A thermodynamic evaluation of the Na2O-Al2O3-SiO2 system that forms nepheline was conducted by utilizing the compound energy formalism and ionic liquid model to represent the solid solution and liquid phases, respectively. These were optimized with experimental data and used to extrapolate phase boundaries into regions of temperature and composition where measurements are unavailable. The intent is to import the determined Gibbs energies into a phase field model to more accurately predict nepheline phase formation and morphology evolution in waste glasses to allow for the design of formulations with maximum loading.